Cantitate/Preț
Produs

Machine Learning on Commodity Tiny Devices

Autor Song Guo, Qihua Zhou
en Limba Engleză Paperback – 19 dec 2024
This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. It presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 36285 lei  6-8 săpt.
  CRC Press – 19 dec 2024 36285 lei  6-8 săpt.
Hardback (1) 49645 lei  3-5 săpt. +2791 lei  4-10 zile
  CRC Press – 13 dec 2022 49645 lei  3-5 săpt. +2791 lei  4-10 zile

Preț: 36285 lei

Preț vechi: 45356 lei
-20% Nou

Puncte Express: 544

Preț estimativ în valută:
6944 7208$ 5790£

Carte tipărită la comandă

Livrare economică 25 martie-08 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032374260
ISBN-10: 1032374268
Pagini: 250
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.47 kg
Editura: CRC Press

Cuprins

1. Introduction  2. Fundamentals: On-device Learning Paradigm  3. Preliminary: Theories and Algorithms  4. Model-level Design: Computation Acceleration and Communication Saving  5. Hardware-level Design: Neural Engines and Tensor Accelerators  6. Infrastructure-level Design: Serverless and Decentralized Machine Learning  7. System-level Design: from Standalone to Clusters  8. Application: Image-based Visual Perception  9. Application: Video-based Real-time Processing 10. Application: Privacy, Security, Robustness and Trustworthiness in Edge AI

Notă biografică

Song Guo is a Full Professor leading the Edge Intelligence Lab and Research Group of Networking and Mobile Computing at the Hong Kong Polytechnic University. Professor Guo is a Fellow of the Canadian Academy of Engineering, Fellow of the IEEE, Fellow of the AAIA and Clarivate Highly Cited Researcher.
Qihua Zhou is a PhD student with the Department of Computing at the Hong Kong Polytechnic University. His research interests include distributed AI systems, large-scale parallel processing, TinyML systems and domain-specific accelerators.