Many Valued Topology and its Applications
Autor Ulrich Höhleen Limba Engleză Paperback – 24 oct 2012
In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 632.24 lei 43-57 zile | |
Springer Us – 24 oct 2012 | 632.24 lei 43-57 zile | |
Hardback (1) | 638.48 lei 43-57 zile | |
Springer Us – 30 apr 2001 | 638.48 lei 43-57 zile |
Preț: 632.24 lei
Preț vechi: 743.81 lei
-15% Nou
Puncte Express: 948
Preț estimativ în valută:
120.100€ • 125.69$ • 100.51£
120.100€ • 125.69$ • 100.51£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461356431
ISBN-10: 1461356431
Pagini: 396
Ilustrații: VII, 382 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461356431
Pagini: 396
Ilustrații: VII, 382 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Categorical Foundations.- 1 Categorical Preliminaries.- 2 Partially Ordered Monads.- 3 Categorical Basis of Topology.- II Many Valued Topology.- 4 Quantic Basis of Filter Theory.- 5 Many Valued Topological Spaces.- 6 Many Valued Convergence Theory.- III Applications of Many Valued Topology.- 7 Stochastic Metrics.- 8 Stochastic Processes.- 9 Probability Measures.- 10 Topologies on M-Valued Sets.- A.1 Regularity based on ortholattices.- A.2 Topologization of Menger spaces.- Author Index.