Marginal Space Learning for Medical Image Analysis: Efficient Detection and Segmentation of Anatomical Structures
Autor Yefeng Zheng, Dorin Comaniciuen Limba Engleză Hardback – 17 apr 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 322.60 lei 43-57 zile | |
Springer – 3 sep 2016 | 322.60 lei 43-57 zile | |
Hardback (1) | 326.62 lei 43-57 zile | |
Springer – 17 apr 2014 | 326.62 lei 43-57 zile |
Preț: 326.62 lei
Preț vechi: 408.28 lei
-20% Nou
Puncte Express: 490
Preț estimativ în valută:
62.51€ • 65.16$ • 52.04£
62.51€ • 65.16$ • 52.04£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781493905997
ISBN-10: 1493905996
Pagini: 288
Ilustrații: XX, 268 p. 122 illus., 58 illus. in color.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.52 kg
Ediția:2014
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1493905996
Pagini: 288
Ilustrații: XX, 268 p. 122 illus., 58 illus. in color.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.52 kg
Ediția:2014
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
Professional/practitionerCuprins
Introduction.- Marginal Space Learning.- Comparison of Marginal Space Learning and Full Space Learning in 2D.- Constrained Marginal Space Learning.- Part-Based Object Detection and Segmentation.- Optimal Mean Shape for Nonrigid Object Detection and Segmentation.- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation.- Applications of Marginal Space Learning in Medical Imaging.- Conclusions and Future Work.
Recenzii
“This book presents a generic learning-based method for efficient 3D object detection called marginal space learning (MSL). … Each chapter ends with a remarkable bibliography on the topics covered. This book is suited for students and researchers with interest in medical image analysis.” (Oscar Bustos, zbMATH 1362.92004, 2017)
Caracteristici
Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and efficiency Flexible, machine learning-based framework, applicable across multiple anatomical structures and imaging modalities Thirty five clinical applications on detecting and segmenting anatomical structures such as heart chambers and valves, blood vessels, liver, kidney, prostate, lymph nodes, and sub-cortical brain structures, in CT, MRI, X-Ray and Ultrasound. Includes supplementary material: sn.pub/extras