Markov Chain Aggregation for Agent-Based Models: Understanding Complex Systems
Autor Sven Banischen Limba Engleză Hardback – 5 ian 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 485.19 lei 6-8 săpt. | |
Springer International Publishing – 30 mar 2018 | 485.19 lei 6-8 săpt. | |
Hardback (1) | 491.26 lei 6-8 săpt. | |
Springer International Publishing – 5 ian 2016 | 491.26 lei 6-8 săpt. |
Din seria Understanding Complex Systems
- 18% Preț: 1089.74 lei
- Preț: 430.41 lei
- 18% Preț: 1096.69 lei
- 15% Preț: 401.82 lei
- 18% Preț: 1221.96 lei
- 15% Preț: 628.24 lei
- 15% Preț: 629.70 lei
- 15% Preț: 638.35 lei
- 18% Preț: 927.37 lei
- 18% Preț: 928.77 lei
- 20% Preț: 637.10 lei
- 18% Preț: 932.79 lei
- 18% Preț: 937.73 lei
- 18% Preț: 924.75 lei
- Preț: 390.36 lei
- 5% Preț: 1388.78 lei
- 15% Preț: 635.31 lei
- Preț: 379.96 lei
- 18% Preț: 1110.77 lei
- 18% Preț: 928.95 lei
- 20% Preț: 642.59 lei
- 18% Preț: 1090.53 lei
- 20% Preț: 642.26 lei
- 15% Preț: 639.80 lei
- 18% Preț: 1364.52 lei
- 18% Preț: 989.99 lei
- 18% Preț: 936.20 lei
- Preț: 384.22 lei
- 18% Preț: 931.40 lei
- 15% Preț: 625.52 lei
- 15% Preț: 631.45 lei
- 15% Preț: 634.32 lei
- 15% Preț: 635.95 lei
- 15% Preț: 626.33 lei
- 15% Preț: 630.64 lei
- 18% Preț: 941.30 lei
- 15% Preț: 636.73 lei
- 15% Preț: 632.42 lei
Preț: 491.26 lei
Preț vechi: 577.96 lei
-15% Nou
Puncte Express: 737
Preț estimativ în valută:
94.03€ • 98.60$ • 77.69£
94.03€ • 98.60$ • 77.69£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319248752
ISBN-10: 3319248758
Pagini: 170
Ilustrații: XIV, 195 p. 83 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Understanding Complex Systems
Locul publicării:Cham, Switzerland
ISBN-10: 3319248758
Pagini: 170
Ilustrații: XIV, 195 p. 83 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Understanding Complex Systems
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction.- Background and Concepts.- Agent-based Models as Markov Chains.- The Voter Model with Homogeneous Mixing.- From Network Symmetries to Markov Projections.- Application to the Contrarian Voter Model.- Information-Theoretic Measures for the Non-Markovian Case.- Overlapping Versus Non-Overlapping Generations.- Aggretion and Emergence: A Synthesis.- Conclusion.
Textul de pe ultima copertă
This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting “micro-chain” including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the updating rule and governs the dynamics at a Markovian level, plays a crucial part in the analysis of “voter-like” models used in population genetics, evolutionary game theory and social dynamics. The book demonstrates that the problem of aggregation in ABMs - and the lumpability conditions in particular - can be embedded into a more general framework that employs information theory in order to identify different levels and relevant scales in complex dynamical systems
Caracteristici
Introduces and describes a new approach for modelling certain types of complex dynamical systems Self-contained presentation and introductory level Useful as advanced text and as self-study guide Includes supplementary material: sn.pub/extras