Mathematical Reflections: In a Room with Many Mirrors: Undergraduate Texts in Mathematics
Autor Peter Hilton, Derek Holton, Jean Pedersenen Limba Engleză Hardback – 13 dec 1996
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 387.70 lei 6-8 săpt. | |
Springer – 27 sep 2012 | 387.70 lei 6-8 săpt. | |
Hardback (1) | 396.91 lei 6-8 săpt. | |
Springer – 13 dec 1996 | 396.91 lei 6-8 săpt. |
Din seria Undergraduate Texts in Mathematics
- 17% Preț: 362.13 lei
- 17% Preț: 365.42 lei
- Preț: 425.12 lei
- 17% Preț: 373.59 lei
- Preț: 404.13 lei
- Preț: 402.33 lei
- Preț: 276.55 lei
- Preț: 367.40 lei
- Preț: 407.96 lei
- 19% Preț: 368.78 lei
- 17% Preț: 368.60 lei
- Preț: 359.48 lei
- 19% Preț: 400.52 lei
- Preț: 400.42 lei
- Preț: 430.01 lei
- Preț: 387.16 lei
- Preț: 424.14 lei
- 17% Preț: 366.38 lei
- 17% Preț: 398.51 lei
- Preț: 290.80 lei
- 17% Preț: 395.93 lei
- 15% Preț: 417.73 lei
- Preț: 414.73 lei
- Preț: 298.00 lei
- Preț: 326.97 lei
- Preț: 407.62 lei
- Preț: 332.02 lei
- 17% Preț: 362.67 lei
- Preț: 358.10 lei
- Preț: 397.68 lei
- 17% Preț: 367.24 lei
- Preț: 431.15 lei
- Preț: 364.40 lei
- Preț: 398.77 lei
- Preț: 400.42 lei
- Preț: 353.62 lei
- 19% Preț: 492.82 lei
- Preț: 388.27 lei
- Preț: 382.24 lei
- 15% Preț: 510.52 lei
- Preț: 393.93 lei
- 15% Preț: 521.01 lei
- 15% Preț: 438.78 lei
- 15% Preț: 522.76 lei
- Preț: 382.24 lei
- 15% Preț: 563.80 lei
- 15% Preț: 452.60 lei
Preț: 396.91 lei
Nou
Puncte Express: 595
Preț estimativ în valută:
75.96€ • 78.90$ • 63.10£
75.96€ • 78.90$ • 63.10£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387947709
ISBN-10: 0387947701
Pagini: 352
Ilustrații: XVI, 352 p.
Dimensiuni: 178 x 254 x 23 mm
Greutate: 0.82 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387947701
Pagini: 352
Ilustrații: XVI, 352 p.
Dimensiuni: 178 x 254 x 23 mm
Greutate: 0.82 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Going Down the Drain.- 1.1 Constructions.- 1.2 Cobwebs.- 1.3 Consolidation.- 1.4 Fibonacci Strikes.- 1.5 Dénouement.- 2 A Far Nicer Arithmetic.- 2.1 General Background: What You Already Know.- 2.2 Some Special Moduli: Getting Ready for the Fun.- 2.3 Arithmetic mod p: Some Beautiful Mathematics.- 2.4 Arithmetic mod Non-primes: The Same But Different.- 2.5 Primes, Codes, and Security.- 2.6 Casting Out 9’s and 11’s: Tricks of the Trade.- 3 Fibonacci and Lucas Numbers.- 3.1 A Number Trick.- 3.2 The Explanation Begins.- 3.3 Divisibility Properties.- 3.4 The Number Trick Finally Explained.- 3.5 More About Divisibility.- 3.6 A Little Geometry!.- 4 Paper-Folding and Number Theory.- 4.1 Introduction: What You Can Do With—and Without—Euclidean Tools.- 4.2 Going Beyond Euclid: Folding 2-Period Regular Polygons.- 4.3 Folding Numbers.- 4.4 Some Mathematical Tidbits.- 4.5 General Folding Procedures.- 4.6 The Quasi-Order Theorem.- 4.7 Appendix: A Little Solid Geometry.- 5 Quilts and Other Real-World Decorative Geometry.- 5.1 Quilts.- 5.2 Variations.- 5.3 Round and Round.- 5.4 Up the Wall.- 6 Pascal, Euler, Triangles, Windmills.- 6.1 Introduction: A Chance to Experiment.- 6.2 The Binomial Theorem.- 6.3 The Pascal Triangle and Windmill.- 6.4 The Pascal Flower and the Generalized Star of David.- 6.5 Eulerian Numbers and Weighted Sums.- 6.6 Even Deeper Mysteries.- 7 Hair and Beyond.- 7.1 A Problem with Pigeons, and Related Ideas.- 7.2 The Biggest Number.- 7.3 The Big Infinity.- 7.4 Other Sets of Cardinality ?0.- 7.5 Schröder and Bernstein.- 7.6 Cardinal Arithmetic.- 7.7 Even More Infinities?.- 8 An Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the Introduction: What’s Different About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3The lént Map and the Logistic Map.- 8.4 Some More Sophisticated Material.- An Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the Introduction: What’s Different About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3 The tent Map and and the Logistic Map.- 8.4 Some more Sophisticated Material.- 9 Some of Our Own Reflections.- 9.1 General Principles.- 9.2 Specific Principles.- 9.3 Appendix: Principles of Mathematical Pedagogy.
Caracteristici
Includes supplementary material: sn.pub/extras Request lecturer material: sn.pub/lecturer-material