Mathematics of the 19th Century: Geometry, Analytic Function Theory
Editat de Andrei N. Kolmogorov, Adolf-Andrei P. Yushkevichen Limba Engleză Hardback – 30 apr 1996
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 388.52 lei 6-8 săpt. | |
Birkhäuser Basel – 11 noi 2011 | 388.52 lei 6-8 săpt. | |
Hardback (1) | 736.16 lei 6-8 săpt. | |
Birkhäuser Basel – 30 apr 1996 | 736.16 lei 6-8 săpt. |
Preț: 736.16 lei
Preț vechi: 897.75 lei
-18% Nou
Puncte Express: 1104
Preț estimativ în valută:
140.89€ • 145.84$ • 119.08£
140.89€ • 145.84$ • 119.08£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764350482
ISBN-10: 3764350482
Pagini: 308
Ilustrații: X, 291 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.69 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
ISBN-10: 3764350482
Pagini: 308
Ilustrații: X, 291 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.69 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1. Geometry.- 1. Analytic and Differential Geometry.- 2. Projective Geometry.- 3. Algebraic Geometry and Geometric Algebra.- 4. Non-Euclidean Geometry.- 5. Multi-Dimensional Geometry.- 6. Topology.- 7. Geometric Transformations.- Conclusion.- 2. Analytic Function.- Results Achieved in Analytic Function Theory in the Eighteenth Century.- Development of the Concept of a Complex Number.- Complex Integration.- The Cauchy Integral Theorem. Residues.- Elliptic Functions in the Work of Gauss.- Hypergeometric Functions.- The First Approach to Modular Functions.- Power Series. The Method of Majorants.- Elliptic Functions in the Work of Abel.- C.G.J. Jacobi. Fundamenta nova functionum ellipticarum.- The Jacobi Theta Functions.- Elliptic Functions in the Work of Eisenstein and Liouville. The First Textbooks.- Abelian Integrals. Abel’s Theorem.- Quadruply Periodic Functions.- Summary of the Development of Analytic Function Theory over the First Half of the Nineteenth Century.- V. Puiseux. Algebraic Functions.- Bernhard Riemann.- Riemann’s Doctoral Dissertation. The Dirichlet Principle.- Conformal Mappings.- Karl Weierstrass.- Analytic Function Theory in Russia. Yu.V. Sokhotski? and the Sokhotski?-Casorati-Weierstrass Theorem.- Entire and Meromorphic Functions. Picard’s Theorem.- Abelian Functions.- Abelian Functions (Continuation).- Automorphic Functions. Uniformization.- Sequences and Series of Analytic Functions.- Conclusion.- Literature.- (F. A. Medvedev).- General Works.- Collected Works and Other Original Sources.- Auxiliary Literature to Chapter 1.- Auxiliary Literature to Chapter 2.- Index of Names (A. F. Lapko).