Cantitate/Preț
Produs

Mathematik für das Bachelorstudium II: Mehrdimensionale Analysis, Differenzialgleichungen, Anwendungen

Autor Matthias Plaue, Mike Scherfner
de Limba Germană Paperback – 8 oct 2019
Dies ist ein Buch über die Mathematik, welches insbesondere die Anforderungen des Bachelorstudiums sinnvoll bedient. Es behandelt die Analysis in mehreren Variablen sowie gewöhnliche und partielle Differenzialgleichungen. Dabei wenden wir uns an Physiker, Mathematiker sowie ambitionierte Lehramtskandidaten und Ingenieure.
Das Buch fördert sowohl das Verständnis als auch das konzentrierte Lernen für Klausuren und mündliche Prüfungen.
Die Autoren bringen ihre Erfahrungen aus zahlreichen erfolgreichen Vorlesungen und Übungen zum Nutzen der Studierenden ein.
Auf einen Blick:
  • Klarer Stil, klare Sprache, klare Struktur.
  • Zahlreiche Erläuterungen.
  • Zu jedem Thema wird gesondert ein informativer Ein- und Ausblick geliefert.
  • Grafiken und viele Beispiele helfen beim Verstehen.
  • Fragen zum Selbsttest unterstützen zusätzlich beim Lernen.
  • Aufgaben mit vollständigen Lösungen dienen der Vertiefung und Vorbereitung auf Prüfungen jeglicher Art.
Citește tot Restrânge

Preț: 21842 lei

Nou

Puncte Express: 328

Preț estimativ în valută:
4180 4312$ 3538£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783827420688
ISBN-10: 3827420687
Pagini: 308
Ilustrații: XIII, 245 S. 18 Abb., 13 Abb. in Farbe.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.45 kg
Ediția:1. Aufl. 2019
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany

Cuprins

I Mehrdimensionale Analysis
1 Metrische Räume
2 Kompakte Mengen in Rn, Abbildungen und Funktionen in Rn
3 Stetige Abbildungen von Rn nach Rm
4 Differenzierbare Abbildungen von Rn nach Rm
5 Gradient, Divergenz und Rotation
6 Höhere partielle Ableitungen und der Laplace-Operator
7 Potenziale
8 Lokale Extrema und Taylor-Polynom
9 Lokale Extrema unter Nebenbedingungen
10 Kurven in Rn
11 Kurvenintegrale
12 Mehrfachintegration in R2 und R3
13 Koordinatentransformation von Integralen in R2
14 Flächen in R3, Oberächen- und Flussintegral
15 Der Satz von Gauß
16 Der Satz von Stokes
Aufgaben zur mehrdimensionalen Analysis
 
II Differenzialgleichungen
17 Grundlegendes zu Differenzialgleichungen
18 Lösungsansatz für homogene lineare Differenzialgleichungen
mit konstanten Koeffzienten
19 Anfangswertprobleme I
20 Anfangswertprobleme II, inhomogene lineare Differenzialgleichungssysteme
und Variation der Konstanten
21 Inhomogene lineare Differenzialgleichungssysteme und Ansatz vom Typ der rechten Seite, Wronski-Test
22 Lösungsansätze für nicht lineare Differenzialgleichungen
23 Nicht lineare Differenzialgleichungssysteme und Stabilität
24 Partielle Differenzialgleichungen: Separationsansatz
25 Wellengleichung, holomorphe und harmonische Funktionen
26 Weiteres zur Wellengleichung, Überblick
27 Fourier-Reihen
28 Variationsrechnung
Aufgaben zu Differenzialgleichungen
 
Lösungen der Selbsttests
Lösungen der Aufgaben
Literatur und Ausklang
Index

Notă biografică

Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.
Mike Scherfner forscht vornehmlich in den Bereichen der Geometrie, mathematischen Physik und Mathematikdidaktik und lehrt Mathematik, Informatik und künstliche Intelligenz. Als Hochschullehrer setzt er sich insbesondere für die individuelle Förderung von Studierenden und neue Lehrkonzepte ein.

Textul de pe ultima copertă

Dies ist ein Buch über die Mathematik, welches insbesondere die Anforderungen des Bachelorstudiums sinnvoll bedient. Es behandelt die Analysis in mehreren Variablen sowie gewöhnliche und partielle Differenzialgleichungen. Dabei wenden wir uns an Physiker, Mathematiker sowie ambitionierte Lehramtskandidaten und Ingenieure.
Hiermit liegt der zweite Band einer dreiteiligen Reihe vor, welche die Themen behandelt, die gewöhnlich Inhalt der Basisvorlesungen sind; darüber hinaus werden im letzten Band Grundlagen für das Beherrschen von weiteren Themen in Spezialvorlesungen geboten. Es liegt also eine konsistente Reihe für wichtige Teile der mathematischen Ausbildung vor.
Das Buch fördert sowohl das Verständnis als auch das konzentrierte Lernen für Klausuren und mündliche Prüfungen.
Die Autoren bringen ihre Erfahrungen aus zahlreichen erfolgreichen Vorlesungen und Übungen zum Nutzen der Studierenden ein.
Auf einen Blick:
  • Klarer Stil, klare Sprache, klare Struktur.
  • Zahlreiche Erläuterungen.
  • Zu jedem Thema wird gesondert ein informativer Ein- und Ausblick geliefert.
  • Grafiken und viele Beispiele helfen beim Verstehen.
  • Fragen zum Selbsttest unterstützen zusätzlich beim Lernen.
  • Aufgaben mit vollständigen Lösungen dienen der Vertiefung und Vorbereitung auf Prüfungen jeglicher Art

Matthias Plaue
 arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.
Mike Scherfner forscht vornehmlich in den Bereichen der Geometrie, mathematischen Physik und Mathematikdidaktik und lehrt Mathematik, Informatik und künstliche Intelligenz. Als Hochschullehrer setzt er sich insbesondere für die individuelle Förderung von Studierenden und neue Lehrkonzepte ein.

Caracteristici

Klarer Stil, klare Sprache, klare Struktur
Stoffauswahl in Verbindung mit Ausbildungskommission Bachelor TU Berlin entstanden
Kompakt und ohne "Schnörkel", zugleich hochgradig verständlich und durch Skizzen und Beispiele anschaulich
Zu jedem Kapitel Fragen zum Selbsttest und Aufgaben mit ausführlichen Lösungen