Perturbation Methods in Non-Linear Systems: Applied Mathematical Sciences, cartea 8
Autor Georgio Eugenio Oscare Giacagliaen Limba Engleză Paperback – 11 dec 1972
Din seria Applied Mathematical Sciences
- 23% Preț: 1367.90 lei
- 18% Preț: 405.26 lei
- 13% Preț: 429.48 lei
- 13% Preț: 430.66 lei
- 24% Preț: 906.74 lei
- 23% Preț: 659.01 lei
- 19% Preț: 743.13 lei
- 18% Preț: 891.04 lei
- 18% Preț: 778.92 lei
- 18% Preț: 931.26 lei
- 15% Preț: 632.42 lei
- Preț: 382.64 lei
- 24% Preț: 808.01 lei
- Preț: 443.52 lei
- Preț: 186.35 lei
- Preț: 391.09 lei
- 18% Preț: 947.32 lei
- 15% Preț: 630.46 lei
- 15% Preț: 518.14 lei
- Preț: 404.85 lei
- Preț: 382.41 lei
- 18% Preț: 721.12 lei
- 15% Preț: 696.82 lei
- Preț: 387.52 lei
- 18% Preț: 996.64 lei
- Preț: 395.05 lei
- 18% Preț: 1107.23 lei
- 18% Preț: 1111.87 lei
- 18% Preț: 1360.66 lei
- 18% Preț: 1106.74 lei
- 18% Preț: 1117.59 lei
- 15% Preț: 639.94 lei
Preț: 388.66 lei
Nou
Puncte Express: 583
Preț estimativ în valută:
74.38€ • 78.24$ • 62.06£
74.38€ • 78.24$ • 62.06£
Carte tipărită la comandă
Livrare economică 10-24 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387900544
ISBN-10: 0387900543
Pagini: 369
Ilustrații: IX, 369 p.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387900543
Pagini: 369
Ilustrații: IX, 369 p.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Canonical Transformation Theory and Generalizations.- 1. Introduction.- 2. Canonical Transformations.- 3. Hamilton-Jacobi Equation. Generalizations.- 4. Lie Series and Lie Transforms.- 5. Lie Transform Depending on a Parameter.- 6. Equivalence Relations.- 7. General Transformations Induced by Lie Series.- Notes.- References.- II. Perturbation Methods for Hamiltonian Systems. Generalizations.- 1. Introduction.- 2. Convergence of a Classical Method of Iteration.- 3. Secular Terms. Lindstedt’s Device.- 4. Poincaré’s Method (Lindstedt’s Method).- 5. Fast and Slow Variables.- 6. Generalization of the Averaging Procedure, Birkoff’s Normalization and Adelphic Integrals.- 7. The Solution of Poincaré’s Problem in Poisson’s Parentheses. Elimination of Secular Terms from Adelphic Integrals.- 8. Perturbation Techniques Based on Lie Transforms.- 9. Perturbation Methods of Non-Hamiltonian Systems Based on Lie Transforms.- Notes.- References.- III. Perturbations of Integrable Systemsl.- 1. Motion of an Integrable System.- 2. Perturbations of an Integral System.- 3. Degenerate Systems.- 4. Perturbed Linear Oscillations.- 5. Linear Periodic Perturbations.- Notes.- References.- IV. Perturbations of Area Preserving Mappings.- 1. Preliminary Considerations.- 2. Regions of Motion. Perturbation of a Truncated Birkoff’s Normal Form.- 3.Moser’s Theorem.- 4. System with n Degree of Freedom.- 5. Degenerate Systems.- Notes.- References.- V. Resonance.- 1. Introduction.- 2. Motion in the Neighborhood of an Equilibrium Point.- 3. Solution by Formal Series28l.- 4. Equivalence with the Problem of Perturbation of a Linear System.- 5. Nonlinear Resonance.- 6. Asymptotic Expansion to Any Order.- 7. Extended Theory and the Ideal Resonance Problem.- 8. Several Degrees of Freedom.- 9.Coupling of Two Harmonic Oscillators.- Notes.- References.- Appendix. Remarks, Some Open Questions and Research Topics.- References.