Perturbation Methods in Non-Linear Systems: Applied Mathematical Sciences, cartea 8
Autor Georgio Eugenio Oscare Giacagliaen Limba Engleză Paperback – 11 dec 1972
Din seria Applied Mathematical Sciences
- 13% Preț: 426.94 lei
- 13% Preț: 426.46 lei
- 13% Preț: 427.63 lei
- 24% Preț: 906.78 lei
- 23% Preț: 659.05 lei
- Preț: 375.64 lei
- 18% Preț: 909.47 lei
- 18% Preț: 795.02 lei
- 18% Preț: 950.52 lei
- 15% Preț: 645.47 lei
- 20% Preț: 755.46 lei
- Preț: 382.65 lei
- 24% Preț: 808.03 lei
- Preț: 452.62 lei
- Preț: 190.23 lei
- Preț: 399.12 lei
- 18% Preț: 966.90 lei
- 15% Preț: 643.48 lei
- 15% Preț: 528.80 lei
- Preț: 413.15 lei
- Preț: 390.25 lei
- 18% Preț: 736.01 lei
- 18% Preț: 1411.05 lei
- 15% Preț: 711.21 lei
- Preț: 395.47 lei
- 18% Preț: 1017.26 lei
- Preț: 403.15 lei
- 18% Preț: 1130.14 lei
- 18% Preț: 1134.87 lei
- 18% Preț: 1388.85 lei
- 18% Preț: 1129.65 lei
- 18% Preț: 1140.71 lei
- 15% Preț: 653.14 lei
Preț: 396.62 lei
Nou
Puncte Express: 595
Preț estimativ în valută:
75.90€ • 77.73$ • 63.14£
75.90€ • 77.73$ • 63.14£
Carte tipărită la comandă
Livrare economică 19 martie-02 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387900544
ISBN-10: 0387900543
Pagini: 369
Ilustrații: IX, 369 p.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387900543
Pagini: 369
Ilustrații: IX, 369 p.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Canonical Transformation Theory and Generalizations.- 1. Introduction.- 2. Canonical Transformations.- 3. Hamilton-Jacobi Equation. Generalizations.- 4. Lie Series and Lie Transforms.- 5. Lie Transform Depending on a Parameter.- 6. Equivalence Relations.- 7. General Transformations Induced by Lie Series.- Notes.- References.- II. Perturbation Methods for Hamiltonian Systems. Generalizations.- 1. Introduction.- 2. Convergence of a Classical Method of Iteration.- 3. Secular Terms. Lindstedt’s Device.- 4. Poincaré’s Method (Lindstedt’s Method).- 5. Fast and Slow Variables.- 6. Generalization of the Averaging Procedure, Birkoff’s Normalization and Adelphic Integrals.- 7. The Solution of Poincaré’s Problem in Poisson’s Parentheses. Elimination of Secular Terms from Adelphic Integrals.- 8. Perturbation Techniques Based on Lie Transforms.- 9. Perturbation Methods of Non-Hamiltonian Systems Based on Lie Transforms.- Notes.- References.- III. Perturbations of Integrable Systemsl.- 1. Motion of an Integrable System.- 2. Perturbations of an Integral System.- 3. Degenerate Systems.- 4. Perturbed Linear Oscillations.- 5. Linear Periodic Perturbations.- Notes.- References.- IV. Perturbations of Area Preserving Mappings.- 1. Preliminary Considerations.- 2. Regions of Motion. Perturbation of a Truncated Birkoff’s Normal Form.- 3.Moser’s Theorem.- 4. System with n Degree of Freedom.- 5. Degenerate Systems.- Notes.- References.- V. Resonance.- 1. Introduction.- 2. Motion in the Neighborhood of an Equilibrium Point.- 3. Solution by Formal Series28l.- 4. Equivalence with the Problem of Perturbation of a Linear System.- 5. Nonlinear Resonance.- 6. Asymptotic Expansion to Any Order.- 7. Extended Theory and the Ideal Resonance Problem.- 8. Several Degrees of Freedom.- 9.Coupling of Two Harmonic Oscillators.- Notes.- References.- Appendix. Remarks, Some Open Questions and Research Topics.- References.