Multiphase Averaging for Classical Systems: With Applications to Adiabatic Theorems: Applied Mathematical Sciences, cartea 72
Autor P. Lochak Traducere de H.S. Dumas Autor C. Meunieren Limba Engleză Paperback – 7 sep 1988
Din seria Applied Mathematical Sciences
- 13% Preț: 426.94 lei
- 13% Preț: 426.46 lei
- 13% Preț: 427.63 lei
- 24% Preț: 906.78 lei
- 23% Preț: 659.05 lei
- Preț: 375.64 lei
- 18% Preț: 909.47 lei
- 18% Preț: 795.02 lei
- 18% Preț: 950.52 lei
- 20% Preț: 755.46 lei
- Preț: 382.65 lei
- 24% Preț: 808.03 lei
- Preț: 452.62 lei
- Preț: 190.23 lei
- Preț: 399.12 lei
- 18% Preț: 966.90 lei
- 15% Preț: 643.48 lei
- 15% Preț: 528.80 lei
- Preț: 413.15 lei
- Preț: 390.25 lei
- 18% Preț: 736.01 lei
- 18% Preț: 1411.05 lei
- 15% Preț: 711.21 lei
- Preț: 395.47 lei
- 18% Preț: 1017.26 lei
- Preț: 403.15 lei
- 18% Preț: 1130.14 lei
- 18% Preț: 1134.87 lei
- 18% Preț: 1388.85 lei
- 18% Preț: 1129.65 lei
- 18% Preț: 1140.71 lei
- 15% Preț: 653.14 lei
Preț: 645.47 lei
Preț vechi: 759.37 lei
-15% Nou
Puncte Express: 968
Preț estimativ în valută:
123.54€ • 128.49$ • 103.53£
123.54€ • 128.49$ • 103.53£
Carte disponibilă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387967783
ISBN-10: 0387967788
Pagini: 360
Ilustrații: XI, 360 p. 10 illus.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.56 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387967788
Pagini: 360
Ilustrații: XI, 360 p. 10 illus.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.56 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction and Notation.- 1.1 Introduction.- 1.2 Notation.- 2 Ergodicity.- 2.1 Anosov’s result.- 2.2 Method of proof.- 2.3 Proof of Lemma 1.- 2.4 Proof of Lemma 2.- 3 On Frequency Systems and First Result for Two Frequency Systems.- 3.1 One frequency; introduction and first order estimates.- 3.2 Increasing the precision; higher order results.- 3.3 Extending the time-scale; geometry enters.- 3.4 Resonance; a first encounter.- 3.5 Two frequency systems; Arnold’s result.- 3.6 Preliminary lemmas.- 3.7 Proof of Arnold’s theorem.- 4 Two Frequency Systems; Neistadt’s Results.- 4.1 Outline of the problem and results.- 4.2 Decomposition of the domain and resonant normal forms.- 4.3 Passage through resonance: the pendulum model.- 4.4 Excluded initial conditions, maximal separation, average separation.- 4.5 Optimality of the results.- 4.6 The case of a one-dimensional base.- 5 N Frequency Systems; Neistadt’s Result Based on Anosov’s Method.- 5.1 Introduction and results.- 5.2 Proof of the theorem.- 5.3 Proof for the differentiable case.- 6 N Frequency Systems; Neistadt’s Results Based on Kasuga’s Method.- 6.1 Statement of the theorems.- 6.2 Proof of Theorem 1.- 6.3 Optimality of the results of Theorem 1.- 6.4 Optimality of the results of Theorem 2.- 7 Hamiltonian Systems.- 7.1 General introduction.- 7.2 The KAM theorem.- 7.3 Nekhoroshev’s theorem; introduction and statement of the theorem.- 7.4 Analytic part of the proof.- 7.5 Geometric part and end of the proof.- 8 Adiabatic Theorems in One Dimension.- 8.1 Adiabatic invariance; definition and examples.- 8.2 Adiabatic series.- 8.3 The harmonic oscillator; adiabatic invariance and parametric resonance.- 8.4 The harmonic oscillator; drift of the action.- 8.5 Drift of the action for general systems.- 8.6Perpetual stability of nonlinear periodic systems.- 9 The Classical Adiabatic Theorems in Many Dimensions.- 9.1 Invariance of action, invariance of volume.- 9.2 An adiabatic theorem for integrable systems.- 9.3 The behavior of the angle variables.- 9.4 The ergodic adiabatic theorem.- 10 The Quantum Adiabatic Theorem.- 10.1 Statement and proof of the theorem.- 10.2 The analogy between classical and quantum theorems.- 10.3 Adiabatic behavior of the quantum phase.- 10.4 Classical angles and quantum phase.- 10.5 Non-communtativity of adiabatic and semiclassical limits.- Appendix 1 Fourier Series.- Appendix 2 Ergodicity.- Appendix 3 Resonance.- Appendix 4 Diophantine Approximations.- Appendix 5 Normal Forms.- Appendix 6 Generating Functions.- Appendix 7 Lie Series.- Appendix 8 Hamiltonian Normal Forms.- Appendix 9 Steepness.- Bibliographical Notes.