Estimation, Control, and the Discrete Kalman Filter: Applied Mathematical Sciences, cartea 71
Autor Donald E. Catlinen Limba Engleză Hardback – 9 noi 1988
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 944.67 lei 6-8 săpt. | |
Springer – 26 sep 2011 | 944.67 lei 6-8 săpt. | |
Hardback (1) | 950.52 lei 3-5 săpt. | |
Springer – 9 noi 1988 | 950.52 lei 3-5 săpt. |
Din seria Applied Mathematical Sciences
- 13% Preț: 426.94 lei
- 13% Preț: 426.46 lei
- 13% Preț: 427.63 lei
- 24% Preț: 906.78 lei
- 23% Preț: 659.05 lei
- Preț: 375.64 lei
- 18% Preț: 909.47 lei
- 18% Preț: 795.02 lei
- 15% Preț: 645.47 lei
- 20% Preț: 755.46 lei
- Preț: 382.65 lei
- 24% Preț: 808.03 lei
- Preț: 452.62 lei
- Preț: 190.23 lei
- Preț: 399.12 lei
- 18% Preț: 966.90 lei
- 15% Preț: 643.48 lei
- 15% Preț: 528.80 lei
- Preț: 413.15 lei
- Preț: 390.25 lei
- 18% Preț: 736.01 lei
- 18% Preț: 1411.05 lei
- 15% Preț: 711.21 lei
- Preț: 395.47 lei
- 18% Preț: 1017.26 lei
- Preț: 403.15 lei
- 18% Preț: 1130.14 lei
- 18% Preț: 1134.87 lei
- 18% Preț: 1388.85 lei
- 18% Preț: 1129.65 lei
- 18% Preț: 1140.71 lei
- 15% Preț: 653.14 lei
Preț: 950.52 lei
Preț vechi: 1159.17 lei
-18% Nou
Puncte Express: 1426
Preț estimativ în valută:
181.93€ • 187.49$ • 153.59£
181.93€ • 187.49$ • 153.59£
Carte disponibilă
Livrare economică 11-25 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387967776
ISBN-10: 038796777X
Pagini: 276
Ilustrații: XIV, 276 p.
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.59 kg
Ediția:1989
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 038796777X
Pagini: 276
Ilustrații: XIV, 276 p.
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.59 kg
Ediția:1989
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Basic Probability.- 1.1. Definitions.- 1.2. Probability Distributions and Densities.- 1.3. Expected Value, Covariance.- 1.4. Independence.- 1.5. The Radon—Nikodym Theorem.- 1.6. Continuously Distributed Random Vectors.- 1.7. The Matrix Inversion Lemma.- 1.8. The Multivariate Normal Distribution.- 1.9. Conditional Expectation.- 1.10. Exercises.- 2 Minimum Variance Estimation—How the Theory Fits.- 2.1. Theory Versus Practice—Some General Observations.- 2.2. The Genesis of Minimum Variance Estimation.- 2.3. The Minimum Variance Estimation Problem.- 2.4. Calculating the Minimum Variance Estimator.- 2.5. Exercises.- 3 The Maximum Entropy Principle.- 3.1. Introduction.- 3.2. The Notion of Entropy.- 3.3. The Maximum Entropy Principle.- 3.4. The Prior Covariance Problem.- 3.5. Minimum Variance Estimation with Prior Covariance.- 3.6. Some Criticisms and Conclusions.- 3.7. Exercises.- 4 Adjoints, Projections, Pseudoinverses.- 4.1. Adjoints.- 4.2. Projections.- 4.3. Pseudoinverses.- 4.4. Calculating the Pseudoinverse in Finite Dimensions.- 4.5. The Grammian.- 4.6. Exercises.- 5 Linear Minimum Variance Estimation.- 5.1. Reformulation.- 5.2. Linear Minimum Variance Estimation.- 5.3. Unbiased Estimators, Affine Estimators.- 5.4. Exercises.- 6 Recursive Linear Estimation (Bayesian Estimation).- 6.1. Introduction.- 6.2. The Recursive Linear Estimator.- 6.3. Exercises.- 7 The Discrete Kalman Filter.- 7.1. Discrete Linear Dynamical Systems.- 7.2. The Kalman Filter.- 7.3. Initialization, Fisher Estimation.- 7.4. Fisher Estimation with Singular Measurement Noise.- 7.5. Exercises.- 8 The Linear Quadratic Tracking Problem.- 8.1. Control of Deterministic Systems.- 8.2. Stochastic Control with Perfect Observations.- 8.3. Stochastic Control with Imperfect Measurement.- 8.4. Exercises.-9 Fixed Interval Smoothing.- 9.1. Introduction.- 9.2. The Rauch, Tung, Streibel Smoother.- 9.3. The Two-Filter Form of the Smoother.- 9.4. Exercises.- Appendix A Construction Measures.- Appendix B Two Examples from Measure Theory.- Appendix C Measurable Functions.- Appendix D Integration.- Appendix E Introduction to Hilbert Space.- Appendix F The Uniform Boundedness Principle and Invertibility of Operators.