Cantitate/Preț
Produs

Maximum Likelihood for Social Science: Strategies for Analysis: Analytical Methods for Social Research

Autor Michael D. Ward, John S. Ahlquist
en Limba Engleză Paperback – 14 noi 2018
This volume provides a practical introduction to the method of maximum likelihood as used in social science research. Ward and Ahlquist focus on applied computation in R and use real social science data from actual, published research. Unique among books at this level, it develops simulation-based tools for model evaluation and selection alongside statistical inference. The book covers standard models for categorical data as well as counts, duration data, and strategies for dealing with data missingness. By working through examples, math, and code, the authors build an understanding about the contexts in which maximum likelihood methods are useful and develop skills in translating mathematical statements into executable computer code. Readers will not only be taught to use likelihood-based tools and generate meaningful interpretations, but they will also acquire a solid foundation for continued study of more advanced statistical techniques.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 27598 lei  43-57 zile
  Cambridge University Press – 14 noi 2018 27598 lei  43-57 zile
Hardback (1) 59897 lei  43-57 zile
  Cambridge University Press – 21 noi 2018 59897 lei  43-57 zile

Din seria Analytical Methods for Social Research

Preț: 27598 lei

Nou

Puncte Express: 414

Preț estimativ în valută:
5282 5486$ 4387£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781316636824
ISBN-10: 1316636828
Pagini: 324
Ilustrații: 49 b/w illus. 43 tables
Dimensiuni: 152 x 227 x 18 mm
Greutate: 0.45 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Analytical Methods for Social Research

Locul publicării:New York, United States

Cuprins

Part I. Concepts, Theory, and Implementation: 1. Introduction to maximum likelihood; 2. Theory; 3. Maximum likelihood for binary outcomes; 4. Implementing MLE; Part II. Model Evaluation and Interpretation: 5. Model evaluation and selection; 6. Inference and interpretation; Part III. The Generalized Linear Model: 7. The generalized linear model; 8. Ordered categorical variable models 9. Models for nominal data; 10. Strategies for analyzing count data; Part IV. Advanced Topics: 10. Duration; 11. Strategies for missing data; Part V. A Look Ahead: 13. Epilogue; Index.

Recenzii

'… offer[s] an excellent text with the goal to introduce social scientists to the maximum likelihood principle in a practical way.' M. Oromaner, Choice

Notă biografică


Descriere

Practical, example-driven introduction to maximum likelihood for the social sciences. Emphasizes computation in R, model selection and interpretation.