Mechanics in Material Space: with Applications to Defect and Fracture Mechanics
Autor Reinhold Kienzler, George Herrmannen Limba Engleză Hardback – 13 mar 2000
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 381.50 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 4 oct 2012 | 381.50 lei 6-8 săpt. | |
Hardback (1) | 384.86 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 13 mar 2000 | 384.86 lei 6-8 săpt. |
Preț: 384.86 lei
Nou
Puncte Express: 577
Preț estimativ în valută:
73.65€ • 76.51$ • 61.18£
73.65€ • 76.51$ • 61.18£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540669654
ISBN-10: 3540669655
Pagini: 316
Ilustrații: XI, 298 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.53 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540669655
Pagini: 316
Ilustrații: XI, 298 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.53 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
1 Mathematical Preliminaries.- 1.1 General Remarks.- 1.2 What is a Conservation Law?.- 1.3 Trivial Conservation Laws.- 1.4 System with a Lagrangian; Noether’s Method.- 1.5 System without a Lagrangian; Neutral-Action Method.- 1.6 Discussion.- 2 Linear Theory of Elasticity.- 2.1 General Remarks.- 2.2 Elements of Linear Elasticity.- 2.3 Conservation Laws of Linear Elastostatics.- 2.4 Alternative Derivations of Conservation Laws.- 3 Properties of the Eshelby Tensor.- 3.1 General Remarks 81.- 3.2 Physical Interpretation of the Components of the Eshelby Tensor.- 3.3 Invariants, Principal Values, Principal Directions and Extremal Values of the Eshelby Tensor.- 4 Linear Elasticity with Defects.- 4.1 General Remarks.- 4.2 Path-Independent Integrals and Energy-Release Rates.- 4.3 Example: Hole-Dislocation Interaction.- 4.4 Path-Independent Integrals of Fracture Mechanics.- 5 Inhomogeneous Elastostatics.- 5.1 General Remarks.- 5.2 Symmetry Transformations.- 5.3 The Homogeneous Case.- 5.4 The Inhomogeneous Case.- 5.5 Relation to Stress-Intensity Factors.- 5.6 Examples.- 6 Elastodynamics.- 6.1 General Remarks.- 6.2 Time t as an Additional Independent Variable.- 6.3 Convolution in Time.- 6.4 Domain-Independent Integrals.- 6.5 Energy-Release Rates.- 6.6 Wave Motion.- 7 Dissipative Systems.- 7.1 General Remarks.- 7.2 Diffusion Equation.- 7.3 Non-Linear Wave Equation.- 7.4 Viscoelasticity.- 8 Coupled Fields.- 8.1 General Remarks.- 8.2 Piezoelectricity.- 8.3 Thermoelasticity.- 8.4 Mechanics of a Porous Medium.- 9 Bars, Shafts and Beams.- 9.1 General Remarks.- 9.2 Elements of Strength-of-Materials.- 9.3 Balance and Conservation Laws for Bars and Shafts.- 9.4 Balance and Conservation Laws for Beams.- 9.5 Energy-Release Rates and Stress-Intensity Factors.- 9.6 Examples.- 10 Plates andShells.- 10.1 General Remarks.- 10.2 Plate Theories.- 10.3 Conservation Laws for Elastostatics of Mindlin Plates.- 10.4 Reduction to the Classical Theory.- 10.5 Conservation Laws for Shells.- Appendix A.- Conservation Laws for Inhomogeneous Bars under Arbitrary Axial Loading.- Appendix B.- B.1 Elastodynamics of Inhomogeneous Bernoulli-Euler Beams.- B.2 Reduction to Statics.- Appendix C.- C.1 Elastodynamics of Inhomogeneous Mindlin Plates.- C.2 Reduction to Statics.- References.- Symbol Index.- Author Index.
Caracteristici
Provides for the first time and in a unified fashion the elements of mechanics in material space This approach is much more general than usual continuum theories (fracture and defect mechanics) Written for engineers with a limited mathematical background