Medical Image Learning with Limited and Noisy Data: First International Workshop, MILLanD 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings: Lecture Notes in Computer Science, cartea 13559
Editat de Ghada Zamzmi, Sameer Antani, Ulas Bagci, Marius George Linguraru, Sivaramakrishnan Rajaraman, Zhiyun Xueen Limba Engleză Paperback – 22 sep 2022
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 330.24 lei
Preț vechi: 412.80 lei
-20% Nou
Puncte Express: 495
Preț estimativ în valută:
63.20€ • 65.81$ • 53.41£
63.20€ • 65.81$ • 53.41£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031167591
ISBN-10: 3031167597
Pagini: 240
Ilustrații: XI, 240 p. 77 illus., 71 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.36 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031167597
Pagini: 240
Ilustrații: XI, 240 p. 77 illus., 71 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.36 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Efficient and Robust Annotation Strategies.- Heatmap Regression for Lesion Detection using Pointwise Annotations.-.- Partial Annotations for the Segmentation of Large Structures with Low Annotation.-.- Abstraction in Pixel-wise Noisy Annotations Can Guide Attention to Improve Prostate Cancer Grade Assessment.- Meta Pixel Loss Correction for Medical Image Segmentation with Noisy Labels.- Re-thinking and Re-labeling LIDC-IDRI for Robust Pulmonary Cancer Prediction.- Weakly-supervised, Self-supervised, and Contrastive Learning.- Universal Lesion Detection and Classification using Limited Data and Weakly-Supervised Self-Training.- BoxShrink: From Bounding Boxes to Segmentation Masks.- Multi-Feature Vision Transformer via Self-Supervised Representation Learning for Improvement of COVID-19 Diagnosis.- SB-SSL: Slice-Based Self-Supervised Transformers for Knee Abnormality Classification from MRI.- Optimizing Transformations for Contrastive Learning in a Differentiable Framework.-Stain-based Contrastive Co-training for Histopathological Image Analysis.- Active and Continual Learning.- CLINICAL: Targeted Active Learning for Imbalanced Medical Image Classification.- Real-time Data Augmentation using Fractional Linear Transformations in Continual Learning.- DIAGNOSE: Avoiding Out-of-distribution Data using Submodular Information Measures.- Transfer Representation Learning.- Auto-segmentation of Hip Joints using MultiPlanar UNet with Transfer learning.- Asymmetry and Architectural Distortion Detection with Limited Mammography Data.- Imbalanced Data and Out-of-distribution Generalization.- Class Imbalance Correction for Improved Universal Lesion Detection and Tagging in CT.- CVAD: An Anomaly Detector for Medical Images Based on Cascade.- Approaches for Noisy, Missing, and Low Quality Data.- Visual Field Prediction with Missing and Noisy Data Based on Distance-based Loss.- Image Quality Classification for Automated Visual Evaluation of Cervical Precancer.- A Monotonicity Constraint Attention Module for Emotion Classification with Limited EEG Data.- Automated Skin Biopsy Analysis with Limited Data.