Medical Optical Imaging and Virtual Microscopy Image Analysis: First International Workshop, MOVI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings: Lecture Notes in Computer Science, cartea 13578
Editat de Yuankai Huo, Bryan A. Millis, Yuyin Zhou, Xiangxue Wang, Adam P. Harrison, Ziyue Xuen Limba Engleză Paperback – 17 sep 2022
The 18 papers presented at MOVI 2022 were carefully reviewed and selected from 25 submissions. The objective of the MOVI workshop is to promote novel scalable and resource-efficient medical image analysis algorithms for high-dimensional image data analy-sis, from optical imaging to virtual microscopy.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 307.71 lei
- 20% Preț: 438.69 lei
- 20% Preț: 645.28 lei
- Preț: 410.88 lei
- 15% Preț: 580.46 lei
- 17% Preț: 427.22 lei
- 20% Preț: 596.46 lei
- Preț: 381.21 lei
- 20% Preț: 353.50 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 309.90 lei
- 20% Preț: 583.40 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 310.26 lei
- 20% Preț: 655.02 lei
- 20% Preț: 580.93 lei
- 20% Preț: 340.32 lei
- 15% Preț: 438.59 lei
- 20% Preț: 591.51 lei
- 20% Preț: 649.49 lei
- 20% Preț: 337.00 lei
- Preț: 449.57 lei
- 20% Preț: 607.39 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 763.23 lei
- 20% Preț: 453.32 lei
- 20% Preț: 575.48 lei
- 20% Preț: 585.88 lei
- 20% Preț: 825.93 lei
- 20% Preț: 763.23 lei
- 17% Preț: 360.19 lei
- 20% Preț: 1183.14 lei
- 20% Preț: 340.32 lei
- 20% Preț: 504.57 lei
- 20% Preț: 369.12 lei
- 20% Preț: 583.40 lei
- 20% Preț: 343.62 lei
- 20% Preț: 350.21 lei
- 20% Preț: 764.89 lei
- 20% Preț: 583.40 lei
- Preț: 389.48 lei
- 20% Preț: 341.95 lei
- 20% Preț: 238.01 lei
- 20% Preț: 538.29 lei
Preț: 356.22 lei
Preț vechi: 445.28 lei
-20% Nou
Puncte Express: 534
Preț estimativ în valută:
68.17€ • 70.74$ • 56.98£
68.17€ • 70.74$ • 56.98£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031169601
ISBN-10: 3031169603
Pagini: 190
Ilustrații: XI, 190 p. 63 illus., 60 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.29 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031169603
Pagini: 190
Ilustrații: XI, 190 p. 63 illus., 60 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.29 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Cell counting with inverse distance kernel and self-supervised learning.- Predicting the visual attention of pathologists evaluating whole slide images of cancer.- Edge-Based Self-Supervision for Semi-Supervised Few-Shot Microscopy Image Cell Segmentation.- Joint Denoising and Super-resolution for Fluorescence Microscopy using Weakly-supervised Deep Learning.- MxIF Q-score: Biology-informed Quality Assurance for Multiplexed Immunofluorescence Imaging.- A Pathologist-Informed Workflow for Classification of Prostate Glands in Histopathology.- Leukocyte Classification using Multimodal Architecture Enhanced by Knowledge Distillation.- Deep learning on lossily compressed pathology images: adverse effects for ImageNet pre-trained models.- Profiling DNA damage in 3D Histology Samples.- Few-shot segmentation of microscopy images using Gaussian process.- Adversarial Stain Transfer to Study the Effect of Color Variation on Cell Instance Segmentation.- Constrained self-supervised method with temporal ensembling for fiber bundle detection on anatomic tracing data.- Sequential multi-task learning for histopathology-based prediction of genetic mutations with extremely imbalanced labels.- Morph-Net: End-to-End Prediction of Nuclear Morphological Features from Histology Images.- A Light-weight Interpretable Model for Nuclei Detection and Weakly-supervised Segmentation.- A coarse-to-fine segmentation methodology based on deep networks for automated analysis of Cryptosporidium parasite from fluorescence microscopic images.- Swin Faster R-CNN for Senescence Detection of Mesenchymal Stem Cells in Bright-field Images.- Characterizing Continual Learning Scenarios for Tumor Classification in Histopathology Images.