Cantitate/Preț
Produs

Metaheuristics for Dynamic Optimization: Studies in Computational Intelligence, cartea 433

Editat de Enrique Alba, Amir Nakib, Patrick Siarry
en Limba Engleză Paperback – 20 sep 2014
This book is an updated effort in summarizing the trending topics and new hot research lines in solving dynamic problems using metaheuristics. An analysis of the present state in solving complex problems quickly draws a clear picture: problems that change in time, having noise and uncertainties in their definition are becoming
very important. The tools to face these problems are still to be built, since existing techniques are either slow or inefficient in tracking the many global optima that those problems are presenting to the solver technique.
Thus, this book is devoted to include several of the most important advances in solving dynamic problems. Metaheuristics are the more popular tools to this end, and then we can find in the book how to best use genetic algorithms, particle swarm, ant colonies, immune systems, variable neighborhood search, and many other bioinspired
techniques. Also, neural network solutions are considered in this book.
Both, theory and practice have been addressed in the chapters of the book. Mathematical background and methodological tools in solving this new class of problems and applications are included. From the applications point of view, not just academic benchmarks are dealt with, but also real world applications in logistics and bioinformatics
are discussed here. The book then covers theory and practice, as well as discrete versus continuous dynamic optimization, in the aim of creating a fresh and comprehensive volume. This book is targeted to either beginners and experienced practitioners in dynamic  optimization, since we took care of devising the chapters in a way that a wide audience could profit from its contents. We hope to offer a single source for up-to-date information in dynamic optimization, an inspiring and attractive new research domain that appeared in these last years and is here to stay.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 97360 lei  43-57 zile
  Springer Berlin, Heidelberg – 20 sep 2014 97360 lei  43-57 zile
Hardback (1) 97977 lei  43-57 zile
  Springer Berlin, Heidelberg – 12 aug 2012 97977 lei  43-57 zile

Din seria Studies in Computational Intelligence

Preț: 97360 lei

Preț vechi: 121700 lei
-20% Nou

Puncte Express: 1460

Preț estimativ în valută:
18633 19355$ 15477£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642443701
ISBN-10: 3642443702
Pagini: 432
Ilustrații: XXXII, 400 p. 103 illus.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.6 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

From the Contents: Performance Analysis of Dynamic Optimization Algorithms.- Quantitative Performance Measures for Dynamic Optimization Problems.- Dynamic Function Optimization: The Moving Peaks Benchmark.- SRCS: a technique for comparing multiple algorithms under several factors in Dynamic Optimization Problems.- Dynamic Combinatorial Optimization Problems: A Fitness Landscape Analysis.- Two Approaches for Single and Multi-Objective Dynamic Optimization.- Self-Adaptive Differential Evolution for Dynamic Environments with Fluctuating Numbers of Optima.- Dynamic multi-objective optimization using PSO.

Textul de pe ultima copertă

This book is an updated effort in summarizing the trending topics and new hot research lines in solving dynamic problems using metaheuristics. An analysis of the present state in solving complex problems quickly draws a clear picture: problems that change in time, having noise and uncertainties in their definition are becoming
very important. The tools to face these problems are still to be built, since existing techniques are either slow or inefficient in tracking the many global optima that those problems are presenting to the solver technique.
Thus, this book is devoted to include several of the most important advances in solving dynamic problems. Metaheuristics are the more popular tools to this end, and then we can find in the book how to best use genetic algorithms, particle swarm, ant colonies, immune systems, variable neighborhood search, and many other bioinspired
techniques. Also, neural network solutions are considered in this book.
Both, theory and practice have been addressed in the chapters of the book. Mathematical background and methodological tools in solving this new class of problems and applications are included. From the applications point of view, not just academic benchmarks are dealt with, but also real world applications in logistics and bioinformatics
are discussed here. The book then covers theory and practice, as well as discrete versus continuous dynamic optimization, in the aim of creating a fresh and comprehensive volume. This book is targeted to either beginners and experienced practitioners in dynamic  optimization, since we took care of devising the chapters in a way that a wide audience could profit from its contents. We hope to offer a single source for up-to-date information in dynamic optimization, an inspiring and attractive new research domain that appeared in these last years and is here to stay.

Caracteristici

Recent research on Metaheuristics for Dynamic Optimization Carefully edited book Written by leading experts in the field