Metrology and Instrumentation – Practical Applications for Engineering and Manufacturing: Wiley-ASME Press Series
Autor S Mekiden Limba Engleză Hardback – 20 dec 2021
Din seria Wiley-ASME Press Series
- 24% Preț: 698.51 lei
- 24% Preț: 631.50 lei
- 24% Preț: 633.43 lei
- Preț: 553.63 lei
- 9% Preț: 836.02 lei
- 9% Preț: 817.54 lei
- 9% Preț: 768.44 lei
- 9% Preț: 779.17 lei
- 9% Preț: 708.05 lei
- 9% Preț: 801.30 lei
- 9% Preț: 764.24 lei
- 9% Preț: 788.14 lei
- 9% Preț: 850.10 lei
- 9% Preț: 704.17 lei
- 9% Preț: 780.14 lei
- 27% Preț: 794.87 lei
- 27% Preț: 775.62 lei
- 31% Preț: 299.52 lei
- 33% Preț: 499.07 lei
- 32% Preț: 648.89 lei
- 30% Preț: 569.87 lei
- 33% Preț: 526.44 lei
- 31% Preț: 550.79 lei
- 31% Preț: 581.69 lei
- 32% Preț: 540.92 lei
- 31% Preț: 582.53 lei
- 29% Preț: 269.93 lei
- 33% Preț: 517.97 lei
- 34% Preț: 669.21 lei
- 29% Preț: 849.91 lei
- 32% Preț: 665.42 lei
- 29% Preț: 613.32 lei
- 32% Preț: 644.35 lei
- 32% Preț: 676.38 lei
- 30% Preț: 704.20 lei
- 30% Preț: 694.32 lei
- 33% Preț: 658.30 lei
Preț: 614.41 lei
Preț vechi: 886.48 lei
-31% Nou
Puncte Express: 922
Preț estimativ în valută:
117.60€ • 123.31$ • 97.17£
117.60€ • 123.31$ • 97.17£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781119721734
ISBN-10: 1119721733
Pagini: 400
Dimensiuni: 183 x 256 x 28 mm
Greutate: 0.93 kg
Editura: Wiley
Seria Wiley-ASME Press Series
Locul publicării:Hoboken, United States
ISBN-10: 1119721733
Pagini: 400
Dimensiuni: 183 x 256 x 28 mm
Greutate: 0.93 kg
Editura: Wiley
Seria Wiley-ASME Press Series
Locul publicării:Hoboken, United States
Cuprins
Preface xiii
Acknowledgments xv
About the Author xvii
1 Fundamental Units and Constants in Metrology 1
1.1 Introduction 1
1.2 Current Definitions of the Main SI Units 6
1.3 New Definition of Seven Base Units of the SI 6
1.4 Derived International System (SI) Units 7
1.5 SI Conversion 7
1.6 Fundamental Constants 8
1.7 Common Measurements 9
1.8 Principles and Practices of Traceability 10
1.8.1 Definition of Traceability 10
1.8.2 Accreditation and Conformity Assessment 11
Multiple Choice Questions of this Chapter 12
References 12
2 Scales of Metrology 13
2.1 Introduction to Practical Metrology across All Scales 13
2.2 Nanometrology 14
2.2.1 Introduction and Need in Industry 14
2.2.2 Definition of Nanometrology 15
2.2.3 Importance of Nanometrology in Science and Technology 15
2.3 Standards 18
2.4 Micrometrology 22
2.4.1 Introduction and Need in Industry 22
2.4.2 Definition of Micrometrology 22
2.4.3 Examples of Micrometrology of Microparts 22
2.5 Macroscale Metrology 23
2.5.1 Standards 25
2.6 Large-Scale Metrology and Large-Volume Metrology 29
2.6.1 Introduction and Need in Industry 29
2.6.2 Definition 30
2.6.3 Verification Standards 32
2.7 Instruments Techniques 34
2.7.1 Large Coordinate Measuring Machines 35
2.7.2 Laser Trackers 35
2.7.3 Theodolite 35
Multiple Choice Questions of this Chapter 37
References 37
3 Applied Math and Statistics 39
3.1 Introduction 39
3.2 Scientific and Engineering Notation 39
3.3 Imperial/Metric Conversions 40
3.4 Ratio 41
3.5 Linear Interpolation 42
3.6 Number Bases 42
3.7 Significant Figures, Rounding, and Truncation 43
3.8 Geometry and Volumes 44
3.8.1 Perimeter 44
3.8.2 Volume and Area 44
3.9 Angular Conversions 44
3.10 Graphs and Plots 45
3.11 Statistical Analysis and Common Distributions 47
3.11.1 Definition of Measurement Data 47
3.11.2 Statistical Measurements 47
3.11.3 Statistical Analysis of Measurements 47
3.11.4 Probability 48
3.11.5 Sample and Population 49
3.11.6 Formulation of Mean and Variance for Direct Measurements 49
3.11.7 Mean and Variance Based on Samples 50
3.11.8 The Standard Deviation of the Mean 51
3.12 Formulation of the Standard Uncertainty and Average of Indirect Measurements 52
3.12.1 How to Determine the Measured Value and Random Error? 52
3.12.2 Repeated Measurements of One Single Quantity 52
3.12.3 Normal Distribution 53
3.12.4 Student's t-distribution 55
Multiple Choice Questions of this Chapter 60
4 Errors and their Sources 61
Introduction 61
4.1 Definition of the Error and Their Types 61
4.1.1 Systematic Errors 62
4.1.2 Random Errors 63
4.1.3 Components of Motion Error Assessment 63
4.2 Measurement Characteristics 63
4.2.1 Characterization of the Measurement 63
4.2.2 Resolution, Error Uncertainty, and Repeatability 64
4.2.3 Model of Measurement 67
4.3 Propagation of Errors 69
4.4 Sources of Errors 73
4.4.1 Static Errors and Dynamic Errors 73
4.5 Error Budget 77
4.5.1 Components of the Error Budget 77
4.5.2 Example of Error-Budget Table 78
4.6 Error Elimination Techniques 79
4.6.1 Methods 79
4.7 Model of Errors in CNC Using HTM 81
4.8 Case Study of Errors Budget 87
4.8.1 Description of the Designed System 87
4.8.2 Error Modeling and Experimental Testing 88
4.9 Solved Problems 96
Multiple Choice Questions of this Chapter 97
References 97
5 Measurement and Measurement Systems 99
5.1 Introduction 99
5.2 What Can Be Standard in a Measurement? 101
5.3 Definitions of Key Measurement Components 102
5.3.1 Measurement System 102
5.3.2 Measurement System Analysis 103
5.3.3 Measurement Process 103
5.4 Physical Measurement Process (PMP) 103
5.5 Difference between Number and an Analysis Model 104
5.6 Measurement Methods 105
5.6.1 Metrology and Measurement 105
5.6.2 Metrological Characteristics of Measuring Instruments 108
5.7 Instrumentation for Measurement 109
5.7.1 Background 109
5.7.2 Measurement Instrumentations 109
5.7.3 Digital Measuring Device Fundamentals 109
5.8 Non-Portable Dimensional Measuring Devices 110
5.8.1 Laser Interferometry, Application to CNC Machines 110
5.8.2 Coordinate Measuring Machine (CMM) 118
5.9 Metrology Laboratory Test for Students 140
Multiple Choice Questions of this Chapter 146
References 146
6 Tolerance Stack-Up Analysis 149
6.1 Introduction 149
6.1.1 Importance of Tolerance Stack-Up Analysis 149
6.1.2 Need for Tolerance Stack-Up Analysis in Assemblies 151
6.1.3 Manufacturing Considerations in Engineering Design 151
6.1.4 Technical Drawing 152
6.1.5 Definitions, Format, andWorkflow of Tolerance Stack-Up 153
6.2 Brief Introduction to Geometric Dimensioning and Tolerancing (GD&T) 156
6.2.1 Notation and Problem Formulation 156
6.2.2 Dimension Types 157
6.2.3 Coordinate Dimensioning 158
6.2.4 Tolerance Types 160
6.2.5 Characteristics of Features and Their Tolerances 162
6.3 Tolerance Format and Decimal Places 164
6.4 Converting Plus/Minus Dimensions and Tolerances into Equal-Bilaterally Toleranced Dimensions 165
6.5 Tolerance Stack Analysis 167
6.5.1 Worst-Case Tolerance Analysis 169
6.5.2 Rules for Assembly Shift 169
6.5.3 Worst-Case Tolerance Stack-Up in Symmetric Dimensional Tolerance 171
6.5.4 Worst-Case Tolerance Stack-Up in Asymmetric Dimensional Tolerance 173
6.6 Statistical Tolerance Analysis 173
6.6.1 Definition of Statistical Tolerance Analysis 173
6.6.2 Worst-Case Analysis vs RSS (Root-Sum Squared) Statistical Analysis 175
6.6.3 Second-Order Tolerance Analysis 176
6.6.4 Cases Discussions 176
6.6.5 Understanding Material Condition Modifiers 178
Appendix A from ISO and ASME Y14 Symbols 188
Multiple Choice Questions of this Chapter 189
References 189
7 Instrument Calibration Methods 191
7.1 Introduction 191
7.2 Definition of Calibration 191
7.3 Need for Calibration 192
7.4 Characteristics of Calibration 193
7.5 Calibration Overall Requirements and Procedures 195
7.5.1 Calibration Methods/Procedures 195
7.6 Calibration Laboratory Requirements 197
7.7 Industry Practices and Regulations 198
7.8 Calibration and Limitations of a Digital System 199
7.9 Verification and Calibration of CNC Machine Tool 201
7.10 Inspection of the Positioning Accuracy of CNC Machine Tools 202
7.11 CNC Machine Error Assessment and Calibration 207
7.12 Assessment of the Contouring in the CNC Machine Using a Kinematic Ballbar System 219
7.13 Calibration of 3-axis CNC Machine Tool 221
7.14 Calibration of a Coordinate Measuring Machine (CMM) 225
7.14.1 CMM Performance Verification 225
7.14.2 Accreditation of Calibration Laboratories 226
Section 1: Scope and Description 231
Section 2: Calibration Requirements 232
Section 3: Preliminary Operations 232
Section 4: Calibration Process 233
Section 5: Data Analysis 234
Section 6: Calibration Report 234
Multiple Choice Questions of this Chapter 235
References 235
8 Uncertainty in Measurements 237
8.1 Introduction and Background 237
8.2 Uncertainty of Measurement 238
8.3 Measurement Error 238
8.4 Why Is Uncertainty of Measurement Important? 239
8.5 Components and Sources of Uncertainty 239
8.5.1 What Causes Uncertainty? 239
8.5.2 Uncertainty Budget Components 240
8.5.3 The Errors Affecting Accuracy 240
8.6 Static Errors and Dynamic Errors 241
8.7 Types of Uncertainty 241
8.8 Uncertainty Evaluations and Analysis 242
8.9 Uncertainty Reporting 243
8.10 How to Report Uncertainty 245
8.11 Fractional Uncertainty Revisited 247
8.12 Propagation of Uncertainty 247
Multiple Choice Questions of this Chapter 252
References 252
9 Dimensional Measurements and Calibration 255
9.1 Length Measurement 255
9.2 Displacement Measurement 255
9.3 Manual Instruments 260
9.3.1 Caliper 260
9.3.2 Vernier Caliper 261
9.3.3 Micrometer 262
9.3.4 Feeler Gauge 262
9.3.5 Liner Measurement Tool 263
9.3.6 American Wire Gauge 263
9.3.7 Bore Gauge 263
9.3.8 Telescopic Feeler Gauge 264
9.3.9 Depth Gauge 265
9.3.10 Angle Plate or Tool 265
9.3.11 Flat Plate 266
9.3.12 Dial Gauge 266
9.3.13 Oil Gauging Tapes 267
9.3.14 Thread Measurement 267
9.3.15 Planimeter 267
9.4 Diameter and Roundness 269
9.4.1 How to Measure a Diameter? 269
9.4.2 Roundness 270
9.5 Angular Measurements 276
9.5.1 Line Standard Angular Measuring Devices 277
9.5.2 Face Standard Angular Measuring Devices 277
9.5.3 Measurement of Inclines 279
9.5.4 Optical Instruments for Angular Measurement 280
9.6 Metrology for Complex Geometric Features 282
9.6.1 Edge Detection Techniques Using a CCD Camera 282
9.6.2 Full Laser Scanning for Reverse Engineering 283
9.7 Measurement Surface Texture 285
9.7.1 Geometry of Surface 285
9.7.2 Surface Integrity 286
9.7.3 Specification of Surfaces 286
9.7.4 Sampling Length 287
9.7.5 Instruments and Measurement of Roughness 290
Multiple Choice Questions of this Chapter 291
References 291
10 Mechanical Measurements and Calibration 293
10.1 Importance of Mechanical Measurements 293
10.2 Mechanical Measurements and Calibration 293
10.3 Description of Mechanical Instruments 294
10.3.1 Mass Measurements 294
10.3.2 Force Measurements 295
10.3.3 Vibration Measurements 295
10.3.4 Volume and Density 296
10.3.5 Hydrometers 298
10.3.6 Acoustic Measurements 298
10.4 Calibration of Mechanical Instruments 300
10.4.1 When Is Equipment Calibration Needed? 300
10.4.2 When Is There No Need for Calibration? 301
10.4.3 Process of Equipment Calibration 301
10.5 Equipment Validation for Measurement 301
10.5.1 Is There a Need of Equipment Validation? 302
10.5.2 Features and Benefits of Validation 302
10.5.3 Process of Validation of Equipment 302
10.6 Difference between Calibration and Validation of Equipment 303
10.7 Difference between Calibration and Verification 303
10.8 Calibration of Each Instrument 304
10.8.1 Mass Calibration 304
10.8.2 Force Calibration 304
10.8.3 Pressure Calibration 304
10.8.4 Vibration Measurements 306
10.8.5 Volume and Density 307
10.8.6 Hydrometers 308
10.8.7 Acoustic Measurements 308
Multiple Choice Questions of this Chapter 308
References 308
11 Thermodynamic Measurements 309
11.1 Background 309
11.2 Scale of Temperature 309
11.2.1 Ideal Gas Law 310
11.2.2 Vacuum 310
11.2.3 Gas Constants 310
11.3 Power 312
11.4 Enthalpy 312
11.5 Humidity Measurements 312
11.6 Methods of Measuring Temperature 313
11.7 Temperature Measured through Thermal Expansion Materials 314
11.7.1 Liquid-in-Glass Thermometer 314
11.7.2 Bimetallic Thermometer 314
11.7.3 Electrical Resistance Thermometry 315
11.7.4 Resistance Temperature Detectors 316
11.7.5 Examples for Discussion 318
11.7.6 Thermistors 320
11.8 Thermoelectric Temperature Measurement or Thermocouples 321
11.8.1 Basic Thermocouples 321
11.8.2 Fundamental Thermocouple Laws 322
11.9 Thermocouple Materials 323
11.9.1 Advantages and Disadvantages of Thermocouple Materials 324
11.9.2 Thermocouple Voltage Measurement 325
11.10 Multi-Junction Thermocouple Circuits 326
11.11 Thermopiles 327
11.12 Radiative Temperature Measurement 327
Multiple Choice Questions of this Chapter 329
References 329
12 Quality Systems and Standards 331
12.1 Introduction to Quality Management 331
12.2 Quality Management 332
12.2.1 Total Quality Management (TQM) 332
12.2.2 Quality Management System (QMS) 333
12.2.3 TQM Is Essential to Complete TQS 333
12.2.4 ISO-Based QMS Certification 333
12.3 Components of Quality Management 334
12.3.1 Quality System (QS) 334
12.3.2 Quality Assurance (QA) 335
12.3.3 Quality Control (QC) 335
12.3.4 Quality Assessment 335
12.4 System Components 336
12.4.1 Quality Audits 336
12.4.2 Preventive and Corrective Action 336
12.4.3 Occupational Safety Requirements 337
12.4.4 Housekeeping Practices 338
12.5 Quality Standards and Guides 338
Multiple Choice Questions of this Chapter 339
References 340
13 Digital Metrology Setups and Industry Revolution I4.0 341
13.1 Introduction 341
13.1.1 What Is a Digital Measurement? 341
13.1.2 Metrology and Digitalization 341
13.1.3 Implementation Strategy 343
13.2 Data Acquisition 343
13.3 Setup Fundamentals for Measurement and Data Acquisition 344
13.3.1 Length Measurement in Open Loop 344
13.3.2 Thermal Measurement and Data-Acquisition Considerations 345
13.3.3 Data Transfer to Cloud 349
13.3.4 Internet of Things (IoT) Metrology 349
13.3.5 Closed-Loop Data Analysis- (In-Process Inspection) 350
13.4 Digital Twin Metrology Inspection 352
Multiple Choice Questions of this Chapter 354
References 354
Index 357
Notă biografică
Samir Mekid, PhD, is Professor of Mechanical Engineering and Founding Director of the Interdisciplinary Research Center for Intelligent Manufacturing and Robotics at King Fahd University of Petroleum and Minerals in Saudi Arabia. He has worked as a design engineer with Caterpillar and is a Chartered Engineer registered with IMechE.