Mitosis Domain Generalization and Diabetic Retinopathy Analysis: MICCAI Challenges MIDOG 2022 and DRAC 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18–22, 2022, Proceedings: Lecture Notes in Computer Science, cartea 13597
Editat de Bin Sheng, Marc Aubrevilleen Limba Engleză Paperback – 30 mai 2023
The peer-reviewed 20 long and 5 short papers included in this volume stem from the following three biomedical image analysis challenges:
- Mitosis Domain Generalization Challenge (MIDOG 2022),
- Diabetic Retinopathy Analysis Challenge (CRAC 2022)
Din seria Lecture Notes in Computer Science
- 20% Preț: 571.63 lei
- 20% Preț: 336.71 lei
- 20% Preț: 333.46 lei
- 20% Preț: 662.76 lei
- 20% Preț: 330.23 lei
- 20% Preț: 747.79 lei
- 20% Preț: 438.67 lei
- 20% Preț: 369.12 lei
- 20% Preț: 315.76 lei
- 20% Preț: 584.40 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 315.18 lei
- 20% Preț: 256.26 lei
- 20% Preț: 1040.03 lei
- 20% Preț: 504.56 lei
- Preț: 402.62 lei
- 20% Preț: 346.40 lei
- 20% Preț: 301.94 lei
- 20% Preț: 237.99 lei
- 5% Preț: 365.59 lei
- 20% Preț: 309.89 lei
- 20% Preț: 321.95 lei
- 20% Preț: 310.25 lei
- 20% Preț: 334.68 lei
- Preț: 373.56 lei
- 20% Preț: 172.68 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 315.76 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 444.17 lei
- 20% Preț: 567.60 lei
- 20% Preț: 632.22 lei
- 17% Preț: 360.18 lei
- 20% Preț: 538.28 lei
- 20% Preț: 335.08 lei
- 20% Preț: 307.68 lei
- 20% Preț: 343.16 lei
- 20% Preț: 641.78 lei
- 20% Preț: 579.56 lei
- 20% Preț: 1053.45 lei
- 15% Preț: 568.74 lei
- Preț: 389.47 lei
- 20% Preț: 333.46 lei
- 20% Preț: 607.38 lei
- 20% Preț: 326.97 lei
Preț: 407.24 lei
Preț vechi: 509.05 lei
-20% Nou
Puncte Express: 611
Preț estimativ în valută:
77.93€ • 82.29$ • 64.85£
77.93€ • 82.29$ • 64.85£
Carte tipărită la comandă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031336577
ISBN-10: 3031336577
Pagini: 242
Ilustrații: IX, 242 p. 85 illus., 60 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.36 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031336577
Pagini: 242
Ilustrații: IX, 242 p. 85 illus., 60 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.36 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Preface DRAC 2022.- nnU-Net Pre- and Postprocessing Strategies for UW-OCTA Segmentation Tasks in Diabetic Retinopathy Analysis.- Automated analysis of diabetic retinopathy using vessel segmentation maps as inductive bias.- Bag of Tricks for Diabetic Retinopathy Grading of Ultra-wide Optical Coherence Tomography Angiography Images.- Deep convolutional neural network for image quality assessment and diabetic retinopathy grading.- Diabetic Retinal Overlap Lesion Segmentation Network.- An Ensemble Method to Automatically Grade Diabetic Retinopathy with Optical Coherence Tomography Angiography Images.- Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to Overcome Data Scarcity.- Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy Analysis on OCTA Images.- Deep Learning-based Multi-tasking System for Diabetic Retinopathy in UW-OCTA images.- Semi-Supervised Semantic Segmentation Methods for UW-OCTA Diabetic Retinopathy Grade Assessment.- ImageQuality Assessment based on Multi-Model Ensemble Class-Imbalance Repair Algorithm for Diabetic Retinopathy UW-OCTA Images.- An improved U-Net for diabetic retinopathy segmentation.- A Vision transformer based deep learning architecture for automatic diagnosis of diabetic retinopathy in optical coherence tomography angiography.- Segmentation, Classification, and Quality Assessment of UW-OCTA Images for the Diagnosis of Diabetic Retinopathy.- Data Augmentation by Fourier Transformation for Class-Imbalance : Application to Medical Image Quality Assessment.- Automatic image quality assessment and DR grading method based on convolutional neural network.- A transfer learning based model ensemble method for image quality assessment and diabetic retinopathy grading.- Automatic Diabetic Retinopathy Lesion Segmentation in UW-OCTA Images using Transfer Learning.- Preface MIDOG 2022.- Reference Algorithms for the Mitosis Domain Generalization (MIDOG) 2022 Challenge.- Radial Prediction Domain Adaption Classifier for the MIDOG 2022 challenge.- Detecting Mitoses with a Convolutional Neural Network for MIDOG 2022 Challenge.- Tackling Mitosis Domain Generalization in Histopathology Images with Color Normalization.- "A Deep Learning based Ensemble Model for Generalized Mitosis Detection in H&E stained Whole Slide Images".- Fine-Grained Hard-Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset.- Multi-task RetinaNet for mitosis detection.