Cantitate/Preț
Produs

Mobile Data Mining: SpringerBriefs in Computer Science

Autor Yuan Yao, Xing Su, Hanghang Tong
en Limba Engleză Paperback – 13 noi 2018
This SpringerBrief presents a typical life-cycle of mobile data mining applications, including:
  • data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors
  •  feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data
  •  model and algorithm design
In particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time
 Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors  explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization.  Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency.
 This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide. 
Citește tot Restrânge

Din seria SpringerBriefs in Computer Science

Preț: 29239 lei

Preț vechi: 36549 lei
-20% Nou

Puncte Express: 439

Preț estimativ în valută:
5596 5830$ 4653£

Carte tipărită la comandă

Livrare economică 06-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030021009
ISBN-10: 3030021009
Pagini: 58
Ilustrații: IX, 58 p. 22 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Computer Science

Locul publicării:Cham, Switzerland

Cuprins

1 Introduction.- 2 Data Capturing and Processing.- 3 Feature Engineering.- 4 Hierarchical Model.- 5 Personalized Model.- 6 Online Model.- 7 Conclusions.


Descriere

This SpringerBrief presents a typical life-cycle of mobile data mining applications, including:

  • data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors
  •  feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data
  •  model and algorithm design

In particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time
 Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors  explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization.  Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency.
 This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide.