Modeling Decisions for Artificial Intelligence: 10th International Conference, MDAI 2013, Barcelona, Spain, November 20-22, 2013, Proceedings: Lecture Notes in Computer Science, cartea 8234
Editat de Vincenc Torra, Yasuo Narukawa, Guillermo Navarro-Arribas, David Megíasen Limba Engleză Paperback – 23 oct 2013
Din seria Lecture Notes in Computer Science
- 15% Preț: 549.48 lei
- 20% Preț: 322.44 lei
- 20% Preț: 324.00 lei
- 20% Preț: 315.78 lei
- 20% Preț: 238.01 lei
- 20% Preț: 1017.66 lei
- 20% Preț: 322.44 lei
- 20% Preț: 438.69 lei
- 20% Preț: 548.35 lei
- 20% Preț: 325.58 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 315.19 lei
- 20% Preț: 1005.39 lei
- 20% Preț: 554.59 lei
- 17% Preț: 360.19 lei
- 20% Preț: 620.45 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1120.51 lei
- 20% Preț: 560.32 lei
- 20% Preț: 611.22 lei
- 20% Preț: 319.10 lei
- 20% Preț: 552.64 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- 20% Preț: 1339.86 lei
- 20% Preț: 172.69 lei
- 20% Preț: 315.78 lei
- Preț: 361.23 lei
- 20% Preț: 969.58 lei
- 20% Preț: 256.27 lei
- 20% Preț: 782.28 lei
- 20% Preț: 301.95 lei
- 20% Preț: 504.57 lei
- 20% Preț: 722.90 lei
- 20% Preț: 369.12 lei
- 20% Preț: 334.72 lei
- 20% Preț: 550.29 lei
- Preț: 389.06 lei
- 20% Preț: 564.99 lei
- 20% Preț: 552.25 lei
- 20% Preț: 552.25 lei
- 20% Preț: 722.40 lei
- 20% Preț: 331.59 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 316.66 lei
Preț vechi: 395.83 lei
-20% Nou
Puncte Express: 475
Preț estimativ în valută:
60.62€ • 66.04$ • 50.85£
60.62€ • 66.04$ • 50.85£
Carte tipărită la comandă
Livrare economică 18 decembrie 24 - 01 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642415494
ISBN-10: 3642415490
Pagini: 332
Ilustrații: XXII, 309 p. 88 illus.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.47 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642415490
Pagini: 332
Ilustrații: XXII, 309 p. 88 illus.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.47 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Theory and Applications of Non-additive Measures and Corresponding Integrals.- Some New Domain Restrictions in Social Choice, and Their Consequences.- Weighted Quasi-Arithmetic Means: Utility Functions and Weighting Functions.- Toward a General Framework for Information Fusion.- Facility Location and Social Choice via Microaggregation.- Ordering Pareto Sets with Fuzzy Inference Systems.- A Comparison of Two Approaches for Situation Detection in an Air-to-Air Combat Scenario.- Web 2.0 Tools to Support Decision Making in Enterprise Contexts.- Using the Logarithmic Generator Function in the Spoken Term Detection Task.- Emotion Detection Using Hybrid Structural and Appearance Descriptors.- A Lazy Learning Approach for Self-training.- Combining Recommender and Reputation Systems to Produce Better Online Advice.- Pushing Constraints into a Pattern-Tree.- Generalization of Quadratic Regularized and Standard Fuzzy c-Means Clustering with Respect to Regularization of Hard c-Means.- Semi-supervised Sequential Kernel Regression Models with Pairwise Constraints.- Query Optimization Strategies in Similarity-Based Databases.- Variables for Controlling Cluster Sizes on Fuzzy c-means.- On Sequential Cluster Extraction Based on L1-Regularized Possibilistic Non-metric Model.- Fast Implementations of Markov Clustering for Protein Sequence Grouping.- The Property of χ2 01-Concordance for Bayesian Confirmation Measures.- Permutability of Fuzzy Consequence Operators Induced by Fuzzy Relations.- Fuzzy Multisets in Granular Hierarchical Structures Generated from Free Monoids.- Landmark Selection for Isometric Feature Mapping Based on Mixed-Integer Optimization.- Rough c-Regression Based on Optimization of Objective Function.- Improving Automatic Edge Selection for Relational Classification.- Analyzing the Impact of Edge Modifications on Networks.