Modern Directional Statistics: Chapman & Hall/CRC Interdisciplinary Statistics
Autor Christophe Ley, Thomas Verdebouten Limba Engleză Paperback – 30 iun 2020
The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods.
Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics.
Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 311.96 lei 6-8 săpt. | |
CRC Press – 30 iun 2020 | 311.96 lei 6-8 săpt. | |
Hardback (1) | 525.57 lei 6-8 săpt. | |
CRC Press – 15 sep 2017 | 525.57 lei 6-8 săpt. |
Din seria Chapman & Hall/CRC Interdisciplinary Statistics
- Preț: 349.09 lei
- Preț: 382.13 lei
- 8% Preț: 487.56 lei
- 13% Preț: 321.41 lei
- Preț: 341.55 lei
- 23% Preț: 427.18 lei
- Preț: 431.15 lei
- 12% Preț: 340.16 lei
- 23% Preț: 475.73 lei
- 18% Preț: 782.87 lei
- 26% Preț: 877.92 lei
- 12% Preț: 329.22 lei
- 18% Preț: 993.18 lei
- Preț: 425.87 lei
- Preț: 450.20 lei
- 13% Preț: 311.96 lei
- 18% Preț: 772.80 lei
- 18% Preț: 726.01 lei
- 18% Preț: 1106.02 lei
- 25% Preț: 498.97 lei
- 13% Preț: 311.96 lei
- 15% Preț: 656.40 lei
- 18% Preț: 786.54 lei
- 23% Preț: 474.08 lei
- 13% Preț: 311.96 lei
- 18% Preț: 785.15 lei
- 12% Preț: 314.60 lei
- 25% Preț: 881.85 lei
- 5% Preț: 1260.75 lei
- 22% Preț: 374.34 lei
- 18% Preț: 1097.16 lei
- 18% Preț: 1003.08 lei
- 23% Preț: 368.42 lei
- 23% Preț: 369.35 lei
- 18% Preț: 1102.92 lei
- 18% Preț: 990.06 lei
- 18% Preț: 1085.46 lei
Preț: 311.96 lei
Preț vechi: 356.63 lei
-13% Nou
Puncte Express: 468
Preț estimativ în valută:
59.72€ • 62.17$ • 49.17£
59.72€ • 62.17$ • 49.17£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367573010
ISBN-10: 0367573016
Pagini: 190
Dimensiuni: 178 x 254 x 16 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Interdisciplinary Statistics
ISBN-10: 0367573016
Pagini: 190
Dimensiuni: 178 x 254 x 16 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Interdisciplinary Statistics
Cuprins
Advances in flexible parametric distribution theory. Advances in kernel density estimation on directional supports. Computational and graphical methods. Local asymptotic normality for directional data. Recent results for tests of uniformity and symmetry. High-dimensional directional statistics.
Notă biografică
Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics.
Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Recenzii
"The book is definitely handy for researchers and graduate students in statistics as well as for scientists and practical users in bioscience, ecological and environmental sciences, social sciences and other applied areas where directional data analysis is needed and even high-dimensional data analytics is encountered." ~Shuangzhe Liu, Stat Papers
Descriere
Descriere de la o altă ediție sau format:
This book provides a detailed account on some of the newest methods for dealing with directional data. Directional data naturally arises in diverse domains such as earth sciences (in particular geology), meteorology, astronomy, studies of animal behavior, image analysis, neurosciences, medicine, machine learning, bioinformatics, and cosmology.
This book provides a detailed account on some of the newest methods for dealing with directional data. Directional data naturally arises in diverse domains such as earth sciences (in particular geology), meteorology, astronomy, studies of animal behavior, image analysis, neurosciences, medicine, machine learning, bioinformatics, and cosmology.