Multi-Agent-Based Simulation XXIV: 24th International Workshop, MABS 2023, London, UK, May 29 – June 2, 2023, Revised Selected Papers: Lecture Notes in Computer Science, cartea 14558
Editat de Luis G. Nardin, Sara Mehryaren Limba Engleză Paperback – 15 mai 2024
The 11 regular papers presented were carefully reviewed and selected from 27 submissions. The papers are organized in subject areas as follows: MABS methodology and tools; MABS and social behavior; and MABS applications.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1040.03 lei
- 20% Preț: 333.46 lei
- 20% Preț: 335.08 lei
- 20% Preț: 444.17 lei
- 20% Preț: 238.01 lei
- 20% Preț: 333.46 lei
- 20% Preț: 438.69 lei
- Preț: 440.52 lei
- 20% Preț: 336.71 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 632.22 lei
- 17% Preț: 427.22 lei
- 20% Preț: 641.78 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1053.45 lei
- 20% Preț: 579.56 lei
- Preț: 373.56 lei
- 20% Preț: 330.23 lei
- 15% Preț: 429.74 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 567.60 lei
- 20% Preț: 575.48 lei
- 20% Preț: 571.63 lei
- 20% Preț: 747.79 lei
- 15% Preț: 568.74 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 346.40 lei
- 20% Preț: 574.05 lei
- Preț: 402.62 lei
- 20% Preț: 584.40 lei
- 20% Preț: 747.79 lei
- 20% Preț: 809.19 lei
- 20% Preț: 649.49 lei
- 20% Preț: 343.16 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 303.25 lei
Preț vechi: 379.06 lei
-20% Nou
Puncte Express: 455
Preț estimativ în valută:
58.04€ • 60.28$ • 48.21£
58.04€ • 60.28$ • 48.21£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031610332
ISBN-10: 3031610334
Pagini: 173
Ilustrații: X, 173 p. 61 illus., 44 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3031610334
Pagini: 173
Ilustrații: X, 173 p. 61 illus., 44 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
.- MABS Methodology and Tools.
.- Can (and should) Automated Surrogate Modelling be Used for Simulation Assistance?.
.- Towards a Better Understanding of Agent-Based Airport Terminal Operations using Surrogate Modeling.
.- Active Sensing for Epidemic State Estimation using ABM-guided Machine Learning.
.- Combining Constraint-Based and Imperative Programming in MABS for More Reliable Modelling.
.- Multi-Agent Financial Systems with RL: A Pension Ecosystem Case (WIP).
.- MABS and Social Behavior.
.- Aspects of Modeling Human Behavior in Agent-Based Social Simulation – What can We Learn from the COVID-19 Pandemic?.
.- Learning Agent Goal Structures by Evolution.
.- Dynamic Context-Sensitive Deliberation.
.- MABS Applications.
.- A Multi-Agent Simulation Model considering the Bounded Rationality of Market Participants: An Example of GENCOs Participation in the Electricity Spot Market.
.- Modeling Cognitive Workload in Open-Source Communities via Simulation.
.- Multi-Agent Simulation of Intelligent Resource Regulation in Integrated Energy and Mobility.
.- Can (and should) Automated Surrogate Modelling be Used for Simulation Assistance?.
.- Towards a Better Understanding of Agent-Based Airport Terminal Operations using Surrogate Modeling.
.- Active Sensing for Epidemic State Estimation using ABM-guided Machine Learning.
.- Combining Constraint-Based and Imperative Programming in MABS for More Reliable Modelling.
.- Multi-Agent Financial Systems with RL: A Pension Ecosystem Case (WIP).
.- MABS and Social Behavior.
.- Aspects of Modeling Human Behavior in Agent-Based Social Simulation – What can We Learn from the COVID-19 Pandemic?.
.- Learning Agent Goal Structures by Evolution.
.- Dynamic Context-Sensitive Deliberation.
.- MABS Applications.
.- A Multi-Agent Simulation Model considering the Bounded Rationality of Market Participants: An Example of GENCOs Participation in the Electricity Spot Market.
.- Modeling Cognitive Workload in Open-Source Communities via Simulation.
.- Multi-Agent Simulation of Intelligent Resource Regulation in Integrated Energy and Mobility.