Multi-Hamiltonian Theory of Dynamical Systems: Theoretical and Mathematical Physics
Autor Maciej Blaszaken Limba Engleză Paperback – 13 noi 2013
Din seria Theoretical and Mathematical Physics
- 20% Preț: 697.22 lei
- 18% Preț: 744.84 lei
- 20% Preț: 699.49 lei
- Preț: 396.81 lei
- 15% Preț: 721.06 lei
- 18% Preț: 1120.68 lei
- Preț: 398.35 lei
- 15% Preț: 643.65 lei
- 15% Preț: 508.60 lei
- 20% Preț: 652.54 lei
- 15% Preț: 646.75 lei
- 15% Preț: 654.12 lei
- 15% Preț: 649.87 lei
- Preț: 396.24 lei
- 15% Preț: 653.14 lei
- 18% Preț: 960.78 lei
- 15% Preț: 529.92 lei
- 18% Preț: 1127.78 lei
- 18% Preț: 1554.09 lei
- 15% Preț: 551.53 lei
- 18% Preț: 1002.75 lei
- Preț: 396.02 lei
- 15% Preț: 648.89 lei
- 18% Preț: 783.35 lei
- 18% Preț: 973.38 lei
- 18% Preț: 907.90 lei
- 15% Preț: 655.78 lei
- 18% Preț: 1118.93 lei
- Preț: 390.25 lei
- 15% Preț: 663.79 lei
- 15% Preț: 653.79 lei
- 15% Preț: 645.28 lei
- 15% Preț: 604.23 lei
- 15% Preț: 639.25 lei
- 15% Preț: 590.81 lei
- Preț: 395.25 lei
- 15% Preț: 589.33 lei
- 19% Preț: 543.18 lei
- 15% Preț: 594.24 lei
- 18% Preț: 916.57 lei
- 18% Preț: 957.75 lei
- Preț: 409.13 lei
- 15% Preț: 532.23 lei
Preț: 391.99 lei
Nou
Puncte Express: 588
Preț estimativ în valută:
75.03€ • 78.03$ • 62.87£
75.03€ • 78.03$ • 62.87£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642637803
ISBN-10: 3642637809
Pagini: 364
Ilustrații: X, 350 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Theoretical and Mathematical Physics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642637809
Pagini: 364
Ilustrații: X, 350 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Theoretical and Mathematical Physics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Preliminary Considerations.- 2. Elements of Differential Calculus for Tensor Fields.- 2.1 Tensors.- 2.2 Tensor Fields.- 2.3 Transformation Properties of Tensor Fields.- 2.4 Directional Derivative of Tensor Fields.- 2.5 Differential ?-Forms.- 2.6 Flows and Lie Transport.- 2.7 Lie Derivatives.- 3. The Theory of Hamiltonian and Bi-Hamiltonian Systems.- 3.1 Lie Algebras.- 3.2 Hamiltonian and Bi-Hamiltonian Vector Fields.- 3.3 Symmetries and Conserved Quantities of Dynamical Systems.- 3.4 Tensor Invariants of Dynamical Systems.- 3.5 Algebraic Properties of Tensor Invariants.- 3.6 The Miura Transformation.- 4. Lax Representations of Multi-Hamiltonian Systems.- 4.1 Lax Operators and Their Spectral Deformations.- 4.2 Lax Representations of Isospectral and Nonisospectral Hierarchies.- 4.3 The Lax Operator Algebra.- 5. Soliton Particles.- 5.1 General Aspects.- 5.2 Algebraic Structure of Linear Systems.- 5.3 Algebraic Structure of Multi-Soliton Representation.- 5.4 Multi-Soliton Perturbation Theory.- 6. Multi-Hamiltonian Finite Dimensional Systems.- 6.1 Stationary Flows of Infinite Systems. Ostrogradsky Parametrizations.- 6.2 Stationary Flows of Infinite Systems. Newton Parametrization.- 6.3 Constrained Flows of Lax Equations.- 6.4 Restricted Flows of Infinite Systems.- 6.5 Separability of Bi-Hamiltonian Chains with Degenerate Poisson Structures.- 6.6 Nonstandard Multi-Hamiltonian Structures and Their Finite Dimensional Reductions.- 6.7 Bi-Hamiltonian Chains on Poisson-Nijenhuis Manifolds.- 7. Multi-Hamiltonian Lax Dynamics in (1+1)-Dimensions.- 7.1 Hamiltonian Dynamics on Lie Algebras.- 7.2 Basic Facts About R-Structures.- 7.3 Multi-Hamiltonian Dynamics of Pseudo-Differential Lax Operators.- 7.4 Multi-Hamiltonian Dynamics of Shift Lax Operators.- 8. Towards aMulti-Hamiltonian Theory of (2+1)-Dimensional Field Systems.- 8.1 The Sato Theory.- 8.2 Multi-Hamiltonian Lax Dynamics for Noncommutative Variables.- References.
Textul de pe ultima copertă
This is a modern approach to Hamiltonian systems where multi-Hamiltonian systems are presented in book form for the first time. These systems allow a unified treatment of finite, lattice and field systems. Having more than one Hamiltonian formulation in a single coordinate system for a nonlinear system is a property closely related to integrability. Thus, the book presents an algebraic theory of integrable systems. It is written for scientists and graduate students.