Cantitate/Preț
Produs

Quantum Probability and Spectral Analysis of Graphs: Theoretical and Mathematical Physics

Autor Akihito Hora Cuvânt înainte de L. Accardi Autor Nobuaki Obata
en Limba Engleză Hardback – 2 mai 2007
It is a great pleasure for me that the new Springer Quantum Probability ProgrammeisopenedbythepresentmonographofAkihitoHoraandNobuaki Obata. In fact this book epitomizes several distinctive features of contemporary quantum probability: First of all the use of speci?c quantum probabilistic techniques to bring original and quite non-trivial contributions to problems with an old history and on which a huge literature exists, both independent of quantum probability. Second, but not less important, the ability to create several bridges among di?erent branches of mathematics apparently far from one another such as the theory of orthogonal polynomials and graph theory, Nevanlinna’stheoryandthetheoryofrepresentationsofthesymmetricgroup. Moreover, the main topic of the present monograph, the asymptotic - haviour of large graphs, is acquiring a growing importance in a multiplicity of applications to several di?erent ?elds, from solid state physics to complex networks,frombiologytotelecommunicationsandoperationresearch,toc- binatorialoptimization.Thiscreatesapotentialaudienceforthepresentbook which goes far beyond the mathematicians and includes physicists, engineers of several di?erent branches, as well as biologists and economists. From the mathematical point of view, the use of sophisticated analytical toolstodrawconclusionsondiscretestructures,suchas,graphs,isparticularly appealing. The use of analysis, the science of the continuum, to discover n- trivial properties of discrete structures has an established tradition in number theory, but in graph theory it constitutes a relatively recent trend and there are few doubts that this trend will expand to an extent comparable to what we ?nd in the theory of numbers. Two main ideas of quantum probability form theunifying framework of the present book: 1. The quantum decomposition of a classical random variable.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64514 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 22 noi 2010 64514 lei  6-8 săpt.
Hardback (1) 64987 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 2 mai 2007 64987 lei  6-8 săpt.

Din seria Theoretical and Mathematical Physics

Preț: 64987 lei

Preț vechi: 76455 lei
-15% Nou

Puncte Express: 975

Preț estimativ în valută:
12437 12874$ 10512£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540488620
ISBN-10: 3540488626
Pagini: 396
Ilustrații: XVIII, 371 p. 8 illus.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Theoretical and Mathematical Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Quantum Probability and Orthogonal Polynomials.- Adjacency Matrices.- Distance-Regular Graphs.- Homogeneous Trees.- Hamming Graphs.- Johnson Graphs.- Regular Graphs.- Comb Graphs and Star Graphs.- The Symmetric Group and Young Diagrams.- The Limit Shape of Young Diagrams.- Central Limit Theorem for the Plancherel Measures of the Symmetric Groups.- Deformation of Kerov's Central Limit Theorem.

Recenzii

From the reviews:
"It is a very accessible introduction for the non expert to a few rapidly evolving areas of mathematics such as spectral analysis of graphs … . this monograph seems to be the first publication providing a synthesis of a very vast mathematical literature in these areas by giving to the reader a concise and self contained panorama of existing results … . this book is important to the quantum probability community and emphasizes well many new applications of quantum probability to other areas of mathematics." (Benoit Collins, Zentralblatt MATH, Vol. 1141, 2008)

Notă biografică

Quantum Probability and Orthogonal Polynomials.- Adjacency Matrix.- Distance-Regular Graph.- Homogeneous Tree.- Hamming Graph.- Johnson Graph.- Regular Graph.- Comb Graph and Star Graph.- Symmetric Group and Young Diagram.- Limit Shape of Young Diagrams.- Central Limit Theorem for the Plancherel Measure of the Symmetric Group.- Deformation of Kerov's Central Limit Theorem.- References.- Index.

Textul de pe ultima copertă

This is the first book to comprehensively cover the quantum probabilistic approach to spectral analysis of graphs. This approach has been developed by the authors and has become an interesting research area in applied mathematics and physics. The book can be used as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, which have been recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
Among the topics discussed along the way are: quantum probability and orthogonal polynomials; asymptotic spectral theory (quantum central limit theorems) for adjacency matrices; the method of quantum decomposition; notions of independence and structure of graphs; and asymptotic representation theory of the symmetric groups.

Caracteristici

This is the first monograph written on the quantum probability approach to spectral analysis of graphs, a subject initiated by the authors many years ago