Cantitate/Preț
Produs

Multidimensional Filter Banks and Wavelets: Research Developments and Applications

Editat de Sankar Basu, Bernard C. Levy
en Limba Engleză Paperback – 7 dec 2010
Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area.
Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 63319 lei  6-8 săpt.
  Springer Us – 6 dec 2010 63319 lei  6-8 săpt.
  Springer Us – 7 dec 2010 63778 lei  6-8 săpt.
Hardback (2) 63973 lei  6-8 săpt.
  Springer Us – 30 iul 1996 63973 lei  6-8 săpt.
  Springer Us – 31 dec 1996 64283 lei  6-8 săpt.

Preț: 63778 lei

Preț vechi: 75033 lei
-15% Nou

Puncte Express: 957

Preț estimativ în valută:
12205 12665$ 10202£

Carte tipărită la comandă

Livrare economică 17-31 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441951717
ISBN-10: 1441951717
Pagini: 244
Ilustrații: VI, 238 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 1997
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Theory.- Gröbner Bases and Multidimensional FIR Multirate Systems.- Reconstruction and Decomposition Algorithms for Biorthogonal Multiwavelets.- Zero-Phase Filter Bank and Wavelet Code r Matrices: Properties, Triangular Decompositions, and a Fast Algorithm.- On Translation Invariant Subspaces and Critically Sampled Wavelet Transforms.- Applications.- Low Bit-Rate Design Considerations for Wavelet-Based Image Coding.- Multiresolution Vector Quantization for Video Coding.- Multiscale, Statistical Anomaly Detection Analysis and Algorithms for Linearized Inverse Scattering Problems.- On the Scalability of 2-D Discrete Wavelet Transform Algorithms.- Short Paper.- A Fast Algorithm to Map Functions Forward.- Contributing Authors.