Cantitate/Preț
Produs

Multilevel Modeling in Plain Language

Autor Karen Robson, David Pevalin
en Limba Engleză Paperback – 23 noi 2015
Have you been told you need to do multilevel modeling, but you can't get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense?
Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. 

This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 24959 lei  3-5 săpt. +1094 lei  5-11 zile
  SAGE Publications – 23 noi 2015 24959 lei  3-5 săpt. +1094 lei  5-11 zile
Hardback (1) 70373 lei  6-8 săpt.
  SAGE Publications – 23 noi 2015 70373 lei  6-8 săpt.

Preț: 24959 lei

Nou

Puncte Express: 374

Preț estimativ în valută:
4777 4962$ 3968£

Carte disponibilă

Livrare economică 13-27 ianuarie 25
Livrare express 28 decembrie 24 - 03 ianuarie 25 pentru 2093 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780857029164
ISBN-10: 0857029169
Pagini: 160
Dimensiuni: 170 x 242 x 10 mm
Greutate: 0.25 kg
Ediția:1
Editura: SAGE Publications
Colecția Sage Publications Ltd
Locul publicării:London, United Kingdom

Recenzii

I started to read the book with vivid interest because of the subject that too often does not find enough space in books which provide an overview of the most used statistical methods  leaving out those who are somewhat a little bit more elaborate. After a while I found that I had read many pages, as a story, in a short time, and, rethinking to the title of the book, I remembered there was a part saying “…. In plain language”. This is really genuine.

The Authors do really introduce the subject in a very friendly way, propose examples which facilitate the reader to better  understand and explain the output of Stata.  I suggest the book both to students and instructors who want a specific text on this subject. On the one hand, students will be not afraid of formula, considering that the book is centred on the understanding of the subjects, on the other hand, instructors will benefit in reviewing the path of the multilevel analysis very quickly.

It is a book for those who have some knowledge of statistic but I think that this aspect is definitely clear to the reader. The book is really complete in all the phases of a multilevel analysis, the “plain approach” helps the reader to grasp the idea,  follow the Stata commands and outputs and, finally, to interpret the findings. I think that the Authors were very skillful in preparing this book and added a very useful resource, in particular, for those who use Stata for their analysis.

Cuprins

Chapter 1: What Is Multilevel Modeling and Why Should I Use It?
Mixing levels of analysis
Theoretical reasons for multilevel modeling
What are the advantages of using multilevel models?
Statistical reasons for multilevel modeling
Assumptions of OLS
Software
How this book is organized
Chapter 2: Random Intercept Models: When intercepts vary
A review of single-level regression
Nesting structures in our data
Getting starting with random intercept models
What do our findings mean so far?
Changing the grouping to schools
Adding Level 1 explanatory variables
Adding Level 2 explanatory variables
Group mean centring
Interactions
Model fit
What about R-squared?
R-squared?
A further assumption and a short note on random and fixed effects
Chapter 3: Random Coefficient Models: When intercepts and coefficients vary
Getting started with random coefficient models
Trying a different random coefficient
Shrinkage
Fanning in and fanning out
Examining the variances
A dichotomous variable as a random coefficient
More than one random coefficient
A note on parsimony and fitting a model with multiple random coefficients
A model with one random and one fixed coefficient
Adding Level 2 variables
Residual diagnostics
First steps in model-building
Some tasters of further extensions to our basic models
Where to next?
Chapter 4: Communicating Results to a Wider Audience
Creating journal-formatted tables
The fixed part of the model
The importance of the null model
Centring variables
Stata commands to make table-making easier
What do you talk about?
Models with random coefficients
What about graphs?
Cross-level interactions
Parting words


Descriere

Have you been told you need to do multilevel modeling, but you can't get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense?
Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. 

This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.


Notă biografică