Multilevel Optimization: Algorithms and Applications: Nonconvex Optimization and Its Applications, cartea 20
Editat de A. Migdalas, Panos M. Pardalos, Peter Värbranden Limba Engleză Hardback – 31 dec 1997
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1197.53 lei 6-8 săpt. | |
Springer Us – 17 sep 2011 | 1197.53 lei 6-8 săpt. | |
Hardback (1) | 1203.25 lei 6-8 săpt. | |
Springer Us – 31 dec 1997 | 1203.25 lei 6-8 săpt. |
Din seria Nonconvex Optimization and Its Applications
- 18% Preț: 930.48 lei
- 20% Preț: 1255.65 lei
- Preț: 388.82 lei
- 18% Preț: 1197.53 lei
- 18% Preț: 929.55 lei
- 18% Preț: 1787.57 lei
- 18% Preț: 1206.35 lei
- 18% Preț: 935.90 lei
- 18% Preț: 1523.95 lei
- 20% Preț: 976.52 lei
- 18% Preț: 1202.76 lei
- 18% Preț: 3253.61 lei
- 18% Preț: 1197.53 lei
- 15% Preț: 586.24 lei
- 18% Preț: 1198.73 lei
- 24% Preț: 1137.18 lei
- 20% Preț: 975.39 lei
- 18% Preț: 936.95 lei
- 20% Preț: 980.09 lei
- 15% Preț: 633.36 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 931.40 lei
- 18% Preț: 932.97 lei
- 18% Preț: 1197.53 lei
- 18% Preț: 1794.08 lei
- 18% Preț: 1209.88 lei
- 18% Preț: 932.19 lei
Preț: 1203.25 lei
Preț vechi: 1467.38 lei
-18% Nou
Puncte Express: 1805
Preț estimativ în valută:
230.35€ • 239.44$ • 190.99£
230.35€ • 239.44$ • 190.99£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792346937
ISBN-10: 0792346939
Pagini: 386
Ilustrații: XXII, 386 p.
Dimensiuni: 160 x 240 x 28 mm
Greutate: 0.74 kg
Ediția:1998
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
ISBN-10: 0792346939
Pagini: 386
Ilustrații: XXII, 386 p.
Dimensiuni: 160 x 240 x 28 mm
Greutate: 0.74 kg
Ediția:1998
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Congested O-D Trip Demand Adjustment Problem: Bilevel Programming Formulation and Optimality Conditions.- 1 Introduction.- 2 Literature Review.- 3 Model Analysis.- 4 Necessary Optimality Conditions of the DAP.- 5 Conclusions.- 2 Determining Tax Credits for Converting Nonfood Crops to Biofuels: An Application of Bilevel Programming.- 1 Introduction.- 2 Mathematical Model.- 3 Description of Algorithms.- 4 Computational Results.- 5 Discussion.- 3 Multilevel Optimization Methods in Mechanics.- 1 Introduction.- 2 Presentation of the Multilevel Decomposition Methods.- 3 Large Cable Structures.- 4 Large Elastoplastic Structures.- 5 Validation and Improvements of Simplified Models.- 6 Extension to other Problems. Decomposition Algorithms for Nonconvex Minimization Problems.- 7 A Multilevel Method for the Approximation of a Nonconvex Minimum Problem by Convex ones.- 8 Multilevel Decomposition into two Convex Problems.- 9 Structures with Fractal Interfaces.- 4 Optimal Structural Design in Nonsmooth Mechanics.- 1 Introduction.- 2 Parametric Nonsmooth Structural Analysis Problems.- 3 Optimal Design Problems.- 4 Mathematical Analysis and Algorithms.- 5 Discussion.- References.- 5 Optimizing the Operations of an Aluminium Smelter Using Non-Linear Bi-Level Programming.- 1 Introduction.- 2 The Mathematical Model of the Aluminium Smelter.- 3 The Solution Algorithm.- 4 The Mathematical Model Representing the Multi-period Operations of the Aluminium Smelter.- 5 Concluding Remarks.- References.- 6 Complexity Issues in Bilevel Linear Programming.- 1 Introduction.- 2 Difficulty in Approximation.- 3 A Special Case Solvable in Polynomial Time.- 4 Regret Ratio in Decision Analysis.- 5 Future Directions.- References.- 7 The Computational Complexity of Multi-Level Bottleneck Programming Problems.- 1 Introduction.- 2 Problem Statement and Previous Complexity Results.- 3 Hardness Proof for Multi-Level Bottleneck Programs.- 4 Hardness Proof for Multi-Level Linear Programs.- 5 The Complexity of Bi-Level Programs.- 6 Discussion.- References.- 8 On the Linear Maxmin and Related Programming Problems.- 1 Introduction.- 2 Reformulations.- 3 Tools for Resolution.- 4 Solving the Linear Maxmin Problem.- 9 Piecewise Sequential Quadratic Programming for Mathematical Programs with Nonlinear Complementarity Constraints.- 1 Introduction.- 2 Application to Optimal Design of Mechanical Structures.- 3 The Piecewise Smooth Approach to NCP-MP.- 4 The PSQP Method for NCP-MPEC.- 5 Computational Testing of PSQP.- References.- 10 A New Branch and Bound Method for Bilevel Linear Programs.- 1 Introduction.- 2 The Equivalent Reverse Convex Program.- 3 Solution Method.- 4 Implementation Issues.- 5 Illustrative Example.- 11 A Penalty Method for Linear Bilevel Programming Problems.- 1 Introduction.- 2 Linear Bilevel Programming Problem.- 3 The Method.- 4 Globalization of the Solution.- 5 Numerical Examples.- 6 Concluding Remarks.- 12 An Implicit Function Approach to Bilevel Programming Problems.- 1 Introduction.- 2 Lipschitz Continuity of Optimal Solutions.- 3 Application of the Bundle Method.- 4 Non-uniquely Solvable Lower Level Problems.- 5 Nonconvex Lower Level Problems and Coupling Constraints in the Upper Level Problem.- 13 Bilevel Linear Programming, Multiobjective Programming, and Monotonic Reverse Convex Programming.- 1 Introduction.- 2 Optimization over the Efficient Set.- 3 Bilevel Linear Programming.- 4 Basic Properties of (FMRP).- 5 Different D.C. Approaches to (FMRP).- 14 Existence of Solutions to Generalized Bilevel Programming Problem.- 1 Introduction.- 2 Notations and Preliminaries.- 3 Parametric Implicit Variational Problem.- 4 Existence Results for Generalized Bilevel Problems.- 5 Final Remarks.- 15 Application of Topological Degree Theory to Complementarity Problems.- 1 Problem Specification and Topological Degree Theory.- 2 General Complementarity Problem.- 3 Sufficient Conditions for Solution Existence.- 4 Standard Complementarity Problem.- 5 Implicit Complementarity Problem.- 6 General Order Complementarity Problem.- References.- 16 Optimality and Duality in Parametric Convex Lexicographic Programming.- 1 Introduction.- 2 Orientation.- 3 Continuity.- 4 Global Optimality.- 5 Local Optimality.- 6 Duality.- 7 Bilevel Zermelo’s Problems.