Cantitate/Preț
Produs

Multiscale Methods in Science and Engineering: Lecture Notes in Computational Science and Engineering, cartea 44

Editat de Björn Engquist, Per Lötstedt, Olof Runborg
en Limba Engleză Paperback – 24 mai 2005
Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.
Citește tot Restrânge

Din seria Lecture Notes in Computational Science and Engineering

Preț: 62284 lei

Preț vechi: 73275 lei
-15% Nou

Puncte Express: 934

Preț estimativ în valută:
11921 12425$ 9924£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540253358
ISBN-10: 3540253351
Pagini: 312
Ilustrații: XI, 289 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Multiscale Discontinuous Galerkin Methods for Elliptic Problems with Multiple Scales.- Discrete Network Approximation for Highly-Packed Composites with Irregular Geometry in Three Dimensions.- Adaptive Monte Carlo Algorithms for Stopped Diffusion.- The Heterogeneous Multi-Scale Method for Homogenization Problems.- A Coarsening Multigrid Method for Flow in Heterogeneous Porous Media.- On the Modeling of Small Geometric Features in Computational Electromagnetics.- Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows.- Adaptive Submodeling for Linear Elasticity Problems with Multiscale Geometric Features.- Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems.- Multipole Solution of Electromagnetic Scattering Problems with Many, Parameter Dependent Incident Waves.- to Normal Multiresolution Approximation.- Combining the Gap-Tooth Scheme with Projective Integration: Patch Dynamics.- Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem.- Multiscale Homogenization of the Navier-Stokes Equation.- Numerical Simulations of the Dynamics of Fiber Suspensions.