Rough Set Theory and Granular Computing: Studies in Fuzziness and Soft Computing, cartea 125
Editat de Masahiro Inuiguchi, Shusaku Tsumoto, Shoji Hiranoen Limba Engleză Hardback – 22 apr 2003
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 945.62 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 6 dec 2010 | 945.62 lei 6-8 săpt. | |
Hardback (1) | 951.77 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 22 apr 2003 | 951.77 lei 6-8 săpt. |
Din seria Studies in Fuzziness and Soft Computing
- 20% Preț: 999.85 lei
- 20% Preț: 653.06 lei
- 20% Preț: 872.96 lei
- 20% Preț: 930.57 lei
- 20% Preț: 1051.00 lei
- 20% Preț: 992.44 lei
- 20% Preț: 655.85 lei
- 20% Preț: 1001.86 lei
- 18% Preț: 954.14 lei
- 20% Preț: 330.10 lei
- 20% Preț: 333.04 lei
- 20% Preț: 997.56 lei
- Preț: 391.61 lei
- 20% Preț: 647.79 lei
- 20% Preț: 986.01 lei
- 18% Preț: 958.56 lei
- 20% Preț: 996.40 lei
- 20% Preț: 999.35 lei
- 15% Preț: 646.43 lei
- 20% Preț: 651.57 lei
- 20% Preț: 997.89 lei
- 15% Preț: 641.03 lei
- 20% Preț: 1009.74 lei
- 20% Preț: 992.62 lei
- Preț: 388.72 lei
- 18% Preț: 1223.43 lei
- 20% Preț: 651.42 lei
- 18% Preț: 951.59 lei
- 18% Preț: 948.61 lei
Preț: 951.77 lei
Preț vechi: 1160.70 lei
-18% Nou
Puncte Express: 1428
Preț estimativ în valută:
182.17€ • 189.46$ • 152.66£
182.17€ • 189.46$ • 152.66£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540005742
ISBN-10: 3540005749
Pagini: 320
Ilustrații: XV, 300 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540005749
Pagini: 320
Ilustrații: XV, 300 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Bayes’ Theorem — the Rough Set Perspective.- 1 Introduction.- 2 Bayes’ Theorem.- 3 Information Systems and Approximation of Sets.- 4 Decision Language.- 5 Decision Algorithms.- 6 Decision Rules in Information Systems.- 7 Properties of Decision Rules.- 8 Decision Tables and Flow Graphs.- 9 Illustrative Example.- 10 Conclusion.- References.- Approximation Spaces in Rough Neurocomputing.- 1 Introduction.- 2 Approximation Spaces in Rough Set Theory.- 3 Generalizations of Approximation Spaces.- 4 Information Granule Systems and Approximation Spaces.- 5 Classifiers as Information Granules.- 6 Approximation Spaces for Information Granules.- 7 Approximation Spaces in Rough-Neuro Computing.- 8 Conclusion.- References.- Soft Computing Pattern Recognition: Principles, Integrations and Data Mining.- 1 Introduction.- 2 Relevance of Fuzzy Set Theory in Pattern Recognition.- 3 Relevance of Neural Network Approaches.- 4 Genetic Algorithms for Pattern Recognition.- 5 Integration and Hybrid Systems.- 6 Evolutionary Rough Fuzzy MLP.- 7 Data mining and knowledge discovery.- References.- I. Generalizations and New Theories.- Generalization of Rough Sets Using Weak Fuzzy Similarity Relations.- Two Directions toward Generalization of Rough Sets.- Two Generalizations of Multisets.- Interval Probability and Its Properties.- On Fractal Dimension in Information Systems.- A Remark on Granular Reasoning and Filtration.- Towards Discovery of Relevant Patterns from Parameterized Schemes of Information Granule Construction.- Approximate Markov Boundaries and Bayesian Networks: Rough Set Approach.- II. Data Mining and Rough Sets.- Mining High Order Decision Rules.- Association Rules from a Point of View of Conditional Logic.- Association Rules with Additional Semantics Modeled by BinaryRelations.- A Knowledge-Oriented Clustering Method Based on Indiscernibility Degree of Objects.- Some Effective Procedures for Data Dependencies in Information Systems.- Improving Rules Induced from Data Describing Self-Injurious Behaviors by Changing Truncation Cutoff and Strength.- The Variable Precision Rough Set Inductive Logic Programming Model and Future Test Cases in Web Usage Mining.- Rough Set and Genetic Programming.- III. Conflict Analysis and Data Analysis.- Rough Set Approach to Conflict Analysis.- Criteria for Consensus Susceptibility in Conflicts Resolving.- L1-Space Based Models for Clustering and Regression.- Upper and Lower Possibility Distributions with Rough Set Concepts.- Efficiency Values Based on Decision Maker’s Interval Pairwise Comparisons.- IV. Applications in Engineering.- Rough Measures, Rough Integrals and Sensor Fusion.- A Design of Architecture for Rough Set Processor.- Identifying Adaptable Components — A Rough Sets Style Approach.- Analysis of Image Sequences for the UAV.
Caracteristici
Recent research and applications in rough set theory and granular computing Includes supplementary material: sn.pub/extras