Cantitate/Preț
Produs

Multivalent Functions: Cambridge Tracts in Mathematics, cartea 110

Autor W. K. Hayman
en Limba Engleză Paperback – 27 ian 2008
The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 42391 lei  6-8 săpt.
  Cambridge University Press – 27 ian 2008 42391 lei  6-8 săpt.
Hardback (1) 78866 lei  6-8 săpt.
  Cambridge University Press – 23 noi 1994 78866 lei  6-8 săpt.

Din seria Cambridge Tracts in Mathematics

Preț: 42391 lei

Nou

Puncte Express: 636

Preț estimativ în valută:
8114 8439$ 6799£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521057677
ISBN-10: 0521057671
Pagini: 276
Ilustrații: 5 b/w illus. 70 exercises
Dimensiuni: 152 x 228 x 12 mm
Greutate: 0.41 kg
Ediția:Revizuită
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Tracts in Mathematics

Locul publicării:Cambridge, United Kingdom

Cuprins

Preface; 1. Elementary bounds for univalent functions; 2. The growth of finitely mean valent functions; 3. Means and coefficients; 4. Symmetrization; 5. Circumferentially mean p-valent functions; 6. Differences of successive coefficients; 7. The Löwner theory; 8. De Branges' Theorem; Bibliography; Index.

Descriere

Essential reading for all interested in complex functions.