Multivariate Statistical Analysis: A High-Dimensional Approach: Theory and Decision Library B, cartea 41
Autor V.I. Serdobolskiien Limba Engleză Paperback – 9 dec 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 638.57 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 9 dec 2010 | 638.57 lei 6-8 săpt. | |
Hardback (1) | 644.82 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 2000 | 644.82 lei 6-8 săpt. |
Din seria Theory and Decision Library B
- Preț: 389.31 lei
- 18% Preț: 1234.46 lei
- 18% Preț: 1828.60 lei
- 18% Preț: 949.42 lei
- 18% Preț: 1227.04 lei
- 18% Preț: 1228.62 lei
- 18% Preț: 1829.05 lei
- 18% Preț: 1229.73 lei
- Preț: 389.88 lei
- 18% Preț: 1226.11 lei
- Preț: 397.97 lei
- 18% Preț: 955.56 lei
- 18% Preț: 952.89 lei
- Preț: 386.99 lei
- 18% Preț: 1222.17 lei
- Preț: 389.88 lei
- 15% Preț: 648.05 lei
- 18% Preț: 949.42 lei
- 15% Preț: 475.80 lei
- 18% Preț: 1544.95 lei
- 15% Preț: 647.59 lei
- 18% Preț: 958.25 lei
- Preț: 381.81 lei
- 18% Preț: 953.82 lei
- Preț: 394.51 lei
- Preț: 387.75 lei
- 18% Preț: 1226.24 lei
- 15% Preț: 646.75 lei
- 15% Preț: 642.03 lei
- 18% Preț: 744.53 lei
- 18% Preț: 1229.58 lei
Preț: 638.57 lei
Preț vechi: 751.25 lei
-15% Nou
Puncte Express: 958
Preț estimativ în valută:
122.20€ • 126.81$ • 102.14£
122.20€ • 126.81$ • 102.14£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789048155934
ISBN-10: 9048155932
Pagini: 260
Ilustrații: XII, 244 p.
Dimensiuni: 160 x 240 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of hardcover 1st ed. 2000
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Theory and Decision Library B
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9048155932
Pagini: 260
Ilustrații: XII, 244 p.
Dimensiuni: 160 x 240 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of hardcover 1st ed. 2000
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Theory and Decision Library B
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
Kolmogorov Asymptotics in Problems of Multivariate Analysis.- Spectral Theory of Large Covariance Matrices.- Approximately Unimprovable Essentially Multivariate Procedures.- 1. Spectral Properties of Large Wishart Matrices.- Wishart Distribution.- Limit Moments of Wishart Matrices.- Limit Formula for the Resolvent of Wishart Matrices.- 2. Resolvents and Spectral Functions of Large Sample Covariance Matrices.- Spectral Functions of Random Gram Matrices.- Spectral Functions of Sample Covariance Matrices.- Limit Spectral Functions of the Increasing Sample Covariance Matrices.- 3. Resolvents and Spectral Functions of Large Pooled Sample Covariance Matrices.- Problem Setting.- Spectral Functions of Pooled Random Gram Matrices.- Spectral Functions of Pooled Sample Covariance Matrices.- Limit Spectral Functions of the Increasing Pooled Sample Covariance Matrices.- 4. Normal Evaluation of Quality Functions.- Measure of Normalizability.- Spectral Functions of Large Covariance Matrices.- Normal Evaluation of Sample Dependent Functionals.- Discussion.- 5. Estimation of High-Dimensional Inverse Covariance Matrices.- Shrinkage Estimators of the Inverse Covariance Matrices.- Generalized Ridge Estimators of the Inverse Covariance Matrices.- Asymptotically Unimprovable Estimators of the Inverse Covariance Matrices.- 6. Epsilon-Dominating Component-Wise Shrinkage Estimators of Normal Mean.- Estimation Function for the Component-Wise Estimators.- Estimators of the Unimprovable Estimation Function.- 7. Improved Estimators of High-Dimensional Expectation Vectors.- Limit Quadratic Risk for a Class of Estimators of Expectation Vectors.- Minimization of the Limit Quadratic Risk.- Statistics to Approximate the Limit Risk Function.- Statistics to Approximate the Extremal limit Solution.- 8. Quadratic Risk of Linear Regression with a Large Number of Random Predictors.- Spectral Functions of Sample Covariance Matrices.- Functionals Depending on the Statistics Sand ?0.- Functionals Depending on Sample Covariance Matrices and Covariance Vectors.- The Leading Part of the Quadratic Risk and its Estimator.- Special Cases.- 9. Linear Discriminant Analysis of Normal Populations with Coinciding Covariance Matrices.- Problem Setting.- Expectation and Variance of Generalized Discriminant Functions.- Limit Probabilities of the Discrimination Errors.- 10. Population Free Quality of Discrimination.- Problem Setting.- Leading Parts of Functionals for Normal Populations.- Leading Parts of Functionals for Arbitrary Populations.- Discussion.- Proofs.- 11. Theory of Discriminant Analysis of the Increasing Number of Independent Variables.- Problem Setting.- A Priori Weighting of Independent Variables.- Minimization of the Limit Error Probability for a Priori Weighting.- Weighting of Independent Variables by Estimators.- Minimization of the Limit Error Probability for Weighting by Estimators.- Statistics to Estimate Probabilities of Errors.- Contribution of Variables to Discrimination.- Selection of a Large Number of Independent Variables.- Conclusions.- References.