Cantitate/Preț
Produs

Nanostructured Thermoelectric Films

Autor Zhiyu Hu, Zhenhua Wu
en Limba Engleză Paperback – 10 iul 2021
This book presents a range of low-dimensional superlattice thermoelectric materials based on physical vapor deposition (PVD) methods and explores various material types, thicknesses, and processing conditions. With the advances made in the performance of semiconductor thermoelectric materials and the efficiency of thermoelectric devices in recent years, thermoelectric power generation systems are likely to replace traditional mechanical heat engines, offering an environmentally friendlier alternative. The use of low-dimensional, nanostructured materials can significantly increase the density of states near the Fermi level and greatly improve the thermoelectric properties of materials. In addition, the book demonstrates that it is possible to influence thermoelectric performance, establish more accurate mathematical models through the regulation of relevant parameters, and ultimately improve the thermoelectric figure of merit (ZT).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 94388 lei  6-8 săpt.
  Springer Nature Singapore – 10 iul 2021 94388 lei  6-8 săpt.
Hardback (1) 95003 lei  6-8 săpt.
  Springer Nature Singapore – 10 iul 2020 95003 lei  6-8 săpt.

Preț: 94388 lei

Preț vechi: 115107 lei
-18% Nou

Puncte Express: 1416

Preț estimativ în valută:
18066 18789$ 15139£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811565205
ISBN-10: 9811565201
Ilustrații: XX, 262 p. 194 illus., 134 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.4 kg
Ediția:1st ed. 2020
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Research Backgroud and Current Situation.- Thermoelectric Performance Measurement Methods and Devices.- Si-based Periodic Multilayer Films.- Sb2Te3-based multilayer films.- Preparation of Sb2Te3/Bi2Te3 Series Films by Magnetron Sputtering.- Molecular Beam Epitaxial Growth of Sb2Te3 Thin Films.- Molecular Beam Epitaxial Growth of Bi2Te3 Thin Films.- Summary.

Notă biografică

Prof. Dr. Zhiyu Hu (Ph.D. MBA), National Chair Professor of China, is holding a Zhi Yuan Chair professorship at Shanghai Jiao Tong University (SJTU) and served as the director of National Key Laboratory of Science and Technology on Micro-/Nano-Fabrication (2012-2018). He received his Ph.D. in physics and MBA from the University of Tennessee, Knoxville in 2000 and 2004 respectfully. He is the founder and director of the Institute of NanoMicroEnergy since 2008. Dr. Hu is an adjunct professor appointment at University of Tennessee, Knoxville, Tennessee, USA plus other honorary positions in several universities and institutes. He was a research staff member at Oak Ridge National Laboratory (ORNL) of the U.S. Department of Energy. His research interests are in NEMS- and MEMS-based devices, nanoscale energy conversion, and nano-materials. Dr. Hu is the author 100+ publications in peer reviewed journals, 6 books and book chapters; 70+ invited talks; 70+ conference presentations and 55 published and pending patents. He is the recipient of many awards that includes Chinese Society of Micro-Nano Technology Innovation Award, Discover Magazine Award, National and Regional Federal Laboratory Consortium awards and several awards from ORNL including The Inventor of the Year Award (2000). Dr. Hu’s work generated many press accolades and mentions around the world. He is an active member of APS, ASME, ACS, ECS, MRS, IECS and the National Physics Honor Society Sigma Pi Sigma. He is an executive member of Nano Engineering Council of ASME and a committee member of the Sensor Division of ECS. He supervised 58 Master’s students, Ph.D. students and Post-doctoral fellows.

Textul de pe ultima copertă

This book presents a range of low-dimensional superlattice thermoelectric materials based on physical vapor deposition (PVD) methods and explores various material types, thicknesses, and processing conditions. With the advances made in the performance of semiconductor thermoelectric materials and the efficiency of thermoelectric devices in recent years, thermoelectric power generation systems are likely to replace traditional mechanical heat engines, offering an environmentally friendlier alternative. The use of low-dimensional, nanostructured materials can significantly increase the density of states near the Fermi level and greatly improve the thermoelectric properties of materials. In addition, the book demonstrates that it is possible to influence thermoelectric performance, establish more accurate mathematical models through the regulation of relevant parameters, and ultimately improve the thermoelectric figure of merit (ZT).

Caracteristici

Presents first-hand experimental results Focuses on multilayer, thin-film thermoelectric materials Discusses the use of nanostructured multilayers to improve thermoelectric performance