Network Science: Complexity in Nature and Technology
Editat de Ernesto Estrada, Maria Fox, Desmond J. Higham, Gian-Luca Oppoen Limba Engleză Paperback – 4 noi 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 630.62 lei 6-8 săpt. | |
SPRINGER LONDON – 4 noi 2014 | 630.62 lei 6-8 săpt. | |
Hardback (1) | 636.78 lei 6-8 săpt. | |
SPRINGER LONDON – 20 sep 2010 | 636.78 lei 6-8 săpt. |
Preț: 630.62 lei
Preț vechi: 788.28 lei
-20% Nou
Puncte Express: 946
Preț estimativ în valută:
120.69€ • 125.36$ • 100.25£
120.69€ • 125.36$ • 100.25£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447160342
ISBN-10: 1447160347
Pagini: 260
Ilustrații: XI, 245 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:2010
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom
ISBN-10: 1447160347
Pagini: 260
Ilustrații: XI, 245 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:2010
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
Complex Networks: An Invitation.- Resistance Distance, Information Centrality, Node Vulnerability and Vibrations in Complex Networks.- From Topology to Phenotype in Protein–Protein Interaction Networks.- Networks and Models with Heterogeneous Population Structure in Epidemiology.- NESSIE: Network Example Source Supporting Innovative Experimentation.- Networks in Urban Design. Six Years of Research in Multiple Centrality Assessment.- The Structure of Financial Networks.- A Hierarchy of Networks Spanning from Individual Organisms to Ecological Landscapes.- Revealing Structure of Complex Biological Systems Using Bayesian Networks.- Dynamics and Statistics of Extreme Events.- Dynamics of Networks of Leaky-Integrate-and-Fire Neurons.
Recenzii
From the reviews:
“Unlike many existing books that address mathematical network science or that focus on a single application area, this book collects papers written by experts specializing in different fields. … the goal of this book is to broaden the view of readers. It focuses on applications of network science rather than on the mathematics of network analysis. It is suitable for readers with any background.” (Hsun-Hsien Chang, ACM Computing Reviews, March, 2011)
“Unlike many existing books that address mathematical network science or that focus on a single application area, this book collects papers written by experts specializing in different fields. … the goal of this book is to broaden the view of readers. It focuses on applications of network science rather than on the mathematics of network analysis. It is suitable for readers with any background.” (Hsun-Hsien Chang, ACM Computing Reviews, March, 2011)
Textul de pe ultima copertă
Connections are important: in studying nature, technology, commerce and the social sciences, it often makes sense to focus on the pattern of interactions between individual components. Furthermore, improvements in computing power have made it possible to gather, store and analyze large data sets across many disciplines, and it is apparent that universal features may exist across seemingly disparate application areas.
Network Science is the emerging field concerned with the study of large, realistic networks. This interdisciplinary endeavor, focusing on the patterns of interactions that arise between individual components of natural and engineered systems, has been applied to data sets from activities as diverse as high-throughput biological experiments, online trading information, smart-meter utility supplies, and pervasive telecommunications and surveillance technologies.
This unique text/reference provides a fascinating insight into the state of the art in network science, highlighting the commonality across very different areas of application and the ways in which each area can be advanced by injecting ideas and techniques from another. The book includes contributions from an international selection of experts, providing viewpoints from a broad range of disciplines. It emphasizes networks that arise in nature - such as food webs, protein interactions, gene expression, and neural connections - and in technology - such as finance, airline transport, urban development and global trade.
Topics and Features:
Dr. Ernesto Estrada is a professor in the Department of Mathematics and Statistics, and the Department of Physics, at the University of Strathclyde, Glasgow, Scotland. Dr. Maria Fox is a professor and head of the Computer and Information Sciences Department at the University of Strathclyde. Dr. Des Higham is a professor in the Department of Mathematics and Statistics at the University of Strathclyde. Dr. Gian-Luca Oppo is a professor and chair of Computational and Nonlinear Physics in the Department of Physics at the University of Strathclyde.
Network Science is the emerging field concerned with the study of large, realistic networks. This interdisciplinary endeavor, focusing on the patterns of interactions that arise between individual components of natural and engineered systems, has been applied to data sets from activities as diverse as high-throughput biological experiments, online trading information, smart-meter utility supplies, and pervasive telecommunications and surveillance technologies.
This unique text/reference provides a fascinating insight into the state of the art in network science, highlighting the commonality across very different areas of application and the ways in which each area can be advanced by injecting ideas and techniques from another. The book includes contributions from an international selection of experts, providing viewpoints from a broad range of disciplines. It emphasizes networks that arise in nature - such as food webs, protein interactions, gene expression, and neural connections - and in technology - such as finance, airline transport, urban development and global trade.
Topics and Features:
- Begins with a clear overview chapter to introduce this interdisciplinary field
- Discusses the classic network science of fixed connectivity structures, including empirical studies, mathematical models and computational algorithms
- Examines time-dependent processes that take place over networks, covering topics such as synchronization, and message passing algorithms
- Investigates time-evolving networks, such as the World Wide Web and shifts in topological properties (connectivity, spectrum, percolation)
- Explores applications of complex networks in the physical and engineering sciences, looking ahead to new developments in the field
Dr. Ernesto Estrada is a professor in the Department of Mathematics and Statistics, and the Department of Physics, at the University of Strathclyde, Glasgow, Scotland. Dr. Maria Fox is a professor and head of the Computer and Information Sciences Department at the University of Strathclyde. Dr. Des Higham is a professor in the Department of Mathematics and Statistics at the University of Strathclyde. Dr. Gian-Luca Oppo is a professor and chair of Computational and Nonlinear Physics in the Department of Physics at the University of Strathclyde.
Caracteristici
Presents a broad, topical overview of the new and emerging discipline of network science Provides viewpoints from disciplines as varied as computer science, mathematics, engineering, physics, chemistry, biology, ecology, neuroscience, epidemiology, and the social sciences Includes contributions from an international selection of experts Includes supplementary material: sn.pub/extras