Neuromechanical Modeling of Posture and Locomotion: Springer Series in Computational Neuroscience
Editat de Boris I. Prilutsky, Donald H. Edwardsen Limba Engleză Hardback – 30 dec 2015
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 929.39 lei 6-8 săpt. | |
Springer – 29 mar 2019 | 929.39 lei 6-8 săpt. | |
Hardback (1) | 935.28 lei 6-8 săpt. | |
Springer – 30 dec 2015 | 935.28 lei 6-8 săpt. |
Din seria Springer Series in Computational Neuroscience
- Preț: 378.63 lei
- 24% Preț: 1173.14 lei
- 23% Preț: 1342.24 lei
- 18% Preț: 1101.98 lei
- 18% Preț: 937.73 lei
- 5% Preț: 1395.98 lei
- 18% Preț: 1194.90 lei
- 18% Preț: 942.24 lei
- 15% Preț: 636.90 lei
- 15% Preț: 635.45 lei
- 18% Preț: 1351.22 lei
- 18% Preț: 932.48 lei
- 18% Preț: 1193.04 lei
- 5% Preț: 1383.26 lei
- 18% Preț: 1203.37 lei
- 18% Preț: 1199.84 lei
- 18% Preț: 1200.00 lei
- 18% Preț: 930.48 lei
Preț: 935.28 lei
Preț vechi: 1140.58 lei
-18% Nou
Puncte Express: 1403
Preț estimativ în valută:
179.05€ • 186.11$ • 148.45£
179.05€ • 186.11$ • 148.45£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781493932665
ISBN-10: 1493932667
Pagini: 368
Ilustrații: XI, 368 p. 116 illus., 52 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.71 kg
Ediția:1st ed. 2016
Editura: Springer
Colecția Springer
Seria Springer Series in Computational Neuroscience
Locul publicării:New York, NY, United States
ISBN-10: 1493932667
Pagini: 368
Ilustrații: XI, 368 p. 116 illus., 52 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.71 kg
Ediția:1st ed. 2016
Editura: Springer
Colecția Springer
Seria Springer Series in Computational Neuroscience
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Preface.- Better science through predictive modeling: Numerical tools for understanding neuromechanical interactions.- A neuromechanical model of spinal control of locomotion.- Neural regulation of limb mechanics: Insights from the organization of proprioceptive circuits.- Model-based approaches to understanding musculoskeletal filtering of neural signals.- Modeling the organization of spinal cord neural circuits controlling two-joint muscles.- Muscles: non-linear transformers of motor neuron activity.- Why is neuromechanical modeling of balance and locomotion so hard?.- Neuromusculoskeletal modeling for the adaptive control of posture during locomotion.- Model-based interpretations of experimental data related to the control of balance during stance and gait in humans.- Computing motion dependent afferent activity during cat locomotion using a forward dynamics musculoskeletal model.- Modeling and optimality analysis of pectoral fin locomotion.- Control of cat walking and paw-shakeby a multifunctional central pattern generator.
Recenzii
“This is a desk reference, text, and atlas on the Biomechanics, Kinesiology, Bioengineering, and Neurophysiology of Posture Control and locomotion of animals, humans, cats, and sting rays. … This is a very high quality monograph on computational neurosciences. The book will benefit researchers, neurophysiologists, neurologists, and kinesiologists.” (Joseph Grenier, Amazon.com, April, 2018)
Notă biografică
Boris Prilutsky received his BS degrees in physical education and applied mathematics/ mechanics from Central Institute of Physical Culture in Moscow, Russia and Moscow Institute of Electronic Engineering, respectively, and a PhD in animal movement biomechanics and physiology from Latvian Research Institute of Traumatology and Orthopedics. He is currently an associate professor in the School of Applied Physiology and director of Biomechanics and Motor Control laboratory at the Georgia Institute of Technology and an adjunct associate professor in the Division of Physical Therapy at Emory University School of Medicine. His research interests are biomechanics and neural control of normal and pathological movement.
Donald H. Edwards received a B.S. degree in electrical engineering from the Massachusetts Institute of Technology and a Ph.D. in neurobiology from Yale University. He studied sensori-motor integration as a postdoctoral research associate with Donald Kennedyat Stanford University and with Brian Mulloney at University of California, Davis. He joined the faculty at Georgia State University as Assistant Professor of Biology and is currently Regents’ Professor of Neuroscience. His research interests include sensori-motor integration, neuromechanics and the neural control of behavior.
Donald H. Edwards received a B.S. degree in electrical engineering from the Massachusetts Institute of Technology and a Ph.D. in neurobiology from Yale University. He studied sensori-motor integration as a postdoctoral research associate with Donald Kennedyat Stanford University and with Brian Mulloney at University of California, Davis. He joined the faculty at Georgia State University as Assistant Professor of Biology and is currently Regents’ Professor of Neuroscience. His research interests include sensori-motor integration, neuromechanics and the neural control of behavior.
Textul de pe ultima copertă
For over a century, research has yielded enormous amounts of quantitative information about animal motor systems. Yet our understanding of neural control mechanisms of animal balance and locomotion remains cursory and fragmented. This book aims to change that.
This is the first book on neuromechanical modeling, a tool that integrates the massive body of knowledge in computational models and complex motor behaviors to reveal the mechanisms by which these behaviors emerge. The majority of research groups working in this area have contributed chapters to this book. The book covers a wide range of topics from theoretical studies linking the organization of spinal reflex pathways and central pattern generating circuits with morphology and mechanics of the musculoskeletal system, to detailed neuromechanical models of balance and locomotor control, to analyses of nonlinear transformations of neural signals by the musculoskeletal system. This book can be used as an introductory guideto this new and exciting area of computational neuroscience research.
This is the first book on neuromechanical modeling, a tool that integrates the massive body of knowledge in computational models and complex motor behaviors to reveal the mechanisms by which these behaviors emerge. The majority of research groups working in this area have contributed chapters to this book. The book covers a wide range of topics from theoretical studies linking the organization of spinal reflex pathways and central pattern generating circuits with morphology and mechanics of the musculoskeletal system, to detailed neuromechanical models of balance and locomotor control, to analyses of nonlinear transformations of neural signals by the musculoskeletal system. This book can be used as an introductory guideto this new and exciting area of computational neuroscience research.
Caracteristici
The first book on the topic of neuromechanics in general and on neuromechanical modeling of posture and locomotion specifically Presents uniquely diverse modeling approaches Covers a range of topics from theoretical studies to detailed neuromechanical models Includes supplementary material: sn.pub/extras