Neuromorphic Systems Engineering: Neural Networks in Silicon: The Springer International Series in Engineering and Computer Science, cartea 447
Editat de Tor Sverre Landeen Limba Engleză Paperback – 6 mai 2013
Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives.
Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon. Topics presented include:
Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 925.98 lei 6-8 săpt. | |
Springer Us – 6 mai 2013 | 925.98 lei 6-8 săpt. | |
Hardback (1) | 931.96 lei 6-8 săpt. | |
Springer Us – 30 apr 1998 | 931.96 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- Preț: 119.98 lei
- 24% Preț: 1041.94 lei
- 20% Preț: 422.80 lei
- Preț: 206.35 lei
- 20% Preț: 313.25 lei
- 20% Preț: 625.07 lei
- 23% Preț: 637.95 lei
- 18% Preț: 1190.42 lei
- 18% Preț: 937.34 lei
- 20% Preț: 627.60 lei
- 18% Preț: 921.55 lei
- 20% Preț: 628.10 lei
- 15% Preț: 619.21 lei
- 20% Preț: 625.38 lei
- 18% Preț: 921.99 lei
- 20% Preț: 626.01 lei
- 20% Preț: 966.36 lei
- 20% Preț: 627.46 lei
- 18% Preț: 919.68 lei
- 20% Preț: 966.99 lei
- 18% Preț: 929.52 lei
- 20% Preț: 626.50 lei
- 15% Preț: 630.93 lei
- 18% Preț: 922.94 lei
- 18% Preț: 1186.29 lei
- 18% Preț: 930.14 lei
- 15% Preț: 625.55 lei
- 18% Preț: 921.25 lei
- 18% Preț: 920.17 lei
- 20% Preț: 1247.75 lei
Preț: 925.98 lei
Preț vechi: 1129.24 lei
-18% Nou
Puncte Express: 1389
Preț estimativ în valută:
177.20€ • 186.37$ • 148.06£
177.20€ • 186.37$ • 148.06£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781475782981
ISBN-10: 1475782985
Pagini: 484
Ilustrații: XVII, 462 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.67 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 1475782985
Pagini: 484
Ilustrații: XVII, 462 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.67 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Cochlear Systems.- Filter Cascades as Analogs of the Cochlea.- An Analogue VLSI Model of Active Cochlea.- A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea.- Speech Recognition Experiments with Silicon Auditory Models.- Retinomorphic Systems.- The Retinomorphic Approach: Pixel-Parallel Adaptive Amplification, Filtering, and Quantization.- Analog VLSI Excitatory Feedback Circuits for Attentional Shifts and Tracking.- Floating-Gate Circuits for Adaptation of Saccadic Eye Movement Accuracy.- Neuromorphic Communication.- to Neuromorphic Communication.- A Pulsed Communication/Computation Framework for Analog VLSI Perceptive Systems.- Asynchronous Communication of 2D Motion Information Using Winner-Takes-All Arbitration.- Communicating Neuronal Ensembles between Neuromorphic Chips.- Neuromorphic Technology.- Introduction: From Neurobiology to Silicon.- A Low-Power Wide-Linear-Range Transconductance Amplifier.- Floating-Gate MOS Synapse Transistors.- Neuromorphic Synapses for Artificial Dendrites.- Winner-Take-All Networks with Lateral Excitation.- Neuromorphic Learning.- Neuromorphic Learning VLSI Systems: A Survey.- Analog VLSI Stochastic Perturbative Learning Architectures.- Winner-Takes-All Associative Memory: A Hamming Distance Vector Quantizer.