Cantitate/Preț
Produs

Non-Fourier Heat Conduction: From Phase-Lag Models to Relativistic and Quantum Transport

Autor Alexander I. Zhmakin
en Limba Engleză Paperback – 3 iul 2024
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 77763 lei  38-45 zile
  Springer International Publishing – 3 iul 2024 77763 lei  38-45 zile
Hardback (1) 94115 lei  6-8 săpt.
  Springer International Publishing – 2 iul 2023 94115 lei  6-8 săpt.

Preț: 77763 lei

Preț vechi: 102320 lei
-24% Nou

Puncte Express: 1166

Preț estimativ în valută:
14889 15504$ 12353£

Carte tipărită la comandă

Livrare economică 10-17 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031259753
ISBN-10: 3031259750
Ilustrații: IX, 422 p. 1 illus.
Dimensiuni: 155 x 235 mm
Ediția:2023
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

1.  Introduction.- 2. Phase-Lag Models.- 3. Phonon Models.- 4. Thermomass Model .- 5. Mesoscopic Moment Equations.- 6. Micro-Temperature & Micromorphic Temperature Models.- 7. Thermodynamic Models.- 8. Fractional Derivative Models .- 9. Fractional Boltzmann and Fokker-Planck equations.- 10.  Elasticity and thermal expansion coupling.- 11. Some Exact Solutions.- 12. Relativistic Brownian Motion .- 13. Relativistic Boltzmann Equation .- 14. Variational Models.- 15. Relativistic Thermodynamics.- 16. Landauer approach.- 17. Green-Kubo approach.- 18. Coherent Phonon Transport.- 19. Conclusions.

Notă biografică

Alexander Zhmakin was born on December 3rd, 1951 in Leningrad, USSR. He completed his education at the Leningrad Polytechnical Institute, graduating in 1974. In 1980, he obtained his PhD in the field of numerical simulation of nonequilibrium shocked flows. He later received his Dr.Sci. in 1992, for his work on the numerical simulation of gas phase and liquid phase epitaxy. Zhmakin's main interests include computational fluid dynamics and heat transfer, as well as the simulation of single crystal growth and cryobiology.

Textul de pe ultima copertă

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.


Caracteristici

Provides a comprehensive and well-structured overview of non-Fourier heat conduction models Looks at heat conduction in materials with memory and/or non-homogeneous inner structure Appeals to researchers studying the fundamentals of heat transfer in e.g. porous materials or biological tissues