Non-homogeneous Random Walks: Lyapunov Function Methods for Near-Critical Stochastic Systems: Cambridge Tracts in Mathematics, cartea 209
Autor Mikhail Menshikov, Serguei Popov, Andrew Wadeen Limba Engleză Hardback – 21 dec 2016
Din seria Cambridge Tracts in Mathematics
- 8% Preț: 452.91 lei
- 9% Preț: 808.04 lei
- 8% Preț: 445.10 lei
- 9% Preț: 661.68 lei
- Preț: 183.38 lei
- Preț: 183.54 lei
- 14% Preț: 758.69 lei
- Preț: 183.75 lei
- Preț: 183.17 lei
- Preț: 183.17 lei
- Preț: 183.00 lei
- Preț: 183.54 lei
- Preț: 300.58 lei
- 14% Preț: 684.98 lei
- Preț: 183.75 lei
- Preț: 183.17 lei
- Preț: 183.54 lei
- Preț: 212.34 lei
- Preț: 212.17 lei
- Preț: 183.38 lei
- Preț: 184.13 lei
- Preț: 182.64 lei
- Preț: 183.17 lei
- Preț: 378.46 lei
- Preț: 375.20 lei
- Preț: 445.62 lei
- 11% Preț: 565.18 lei
- 11% Preț: 438.15 lei
- 11% Preț: 406.30 lei
- Preț: 440.18 lei
- Preț: 442.80 lei
- Preț: 415.39 lei
- Preț: 440.18 lei
- Preț: 426.54 lei
- 11% Preț: 500.35 lei
- 14% Preț: 768.65 lei
- Preț: 300.34 lei
- 14% Preț: 774.48 lei
Preț: 939.48 lei
Preț vechi: 1092.42 lei
-14% Nou
Puncte Express: 1409
Preț estimativ în valută:
179.83€ • 188.56$ • 148.58£
179.83€ • 188.56$ • 148.58£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107026698
ISBN-10: 1107026695
Pagini: 382
Ilustrații: 20 b/w illus.
Dimensiuni: 160 x 237 x 30 mm
Greutate: 0.73 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Tracts in Mathematics
Locul publicării:New York, United States
ISBN-10: 1107026695
Pagini: 382
Ilustrații: 20 b/w illus.
Dimensiuni: 160 x 237 x 30 mm
Greutate: 0.73 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Tracts in Mathematics
Locul publicării:New York, United States
Cuprins
1. Introduction; 2. Semimartingale approach and Markov chains; 3. Lamperti's problem; 4. Many-dimensional random walks; 5. Heavy tails; 6. Further applications; 7. Markov chains in continuous time; Glossary of named assumptions; Bibliography; Index.
Recenzii
'This is another impressive volume in the prestigious `Cambridge Tracts in Mathematics' series … The authors of this book are well-known for their long standing and well-recognized contributions to this area of research. Besides their own results published over the last two decades, the authors cover all significant achievements up to date … It is remarkable to see detailed `Bibliographical notes' at the end of each chapter. The authors have done a great job by providing valuable information about the historical development of any topic treated in this book. We find extremely interesting facts, stories and references. All this makes the book more than interesting to read and use.' Jordan M. Stoyanov, Zentralblatt MATH
'This book gives a comprehensive account of the study of random walks with spatially non-homogeneous transition kernels. The main theme is to study recurrence versus transience and moments of passage times, as well as path asymptotics, by constructing suitable Lyapunov functions, which define semi-martingales when composed with the random walk. Of special interest are the Lamperti processes, which are stochastic processes on [0, ∞) with drift vanishing asymptotically on the order of 1/x as the space variable x tends to infinity. … Each chapter ends with detailed bibliographical notes.' Rongfeng Sun, Mathematical Reviews
'This book gives a comprehensive account of the study of random walks with spatially non-homogeneous transition kernels. The main theme is to study recurrence versus transience and moments of passage times, as well as path asymptotics, by constructing suitable Lyapunov functions, which define semi-martingales when composed with the random walk. Of special interest are the Lamperti processes, which are stochastic processes on [0, ∞) with drift vanishing asymptotically on the order of 1/x as the space variable x tends to infinity. … Each chapter ends with detailed bibliographical notes.' Rongfeng Sun, Mathematical Reviews
Notă biografică
Descriere
A modern presentation of the 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks.