Nonlinear Dispersive Partial Differential Equations and Inverse Scattering: Fields Institute Communications, cartea 83
Editat de Peter D. Miller, Peter A. Perry, Jean-Claude Saut, Catherine Sulemen Limba Engleză Paperback – 14 noi 2020
The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 795.12 lei 6-8 săpt. | |
Springer – 14 noi 2020 | 795.12 lei 6-8 săpt. | |
Hardback (1) | 800.34 lei 6-8 săpt. | |
Springer – 14 noi 2019 | 800.34 lei 6-8 săpt. |
Din seria Fields Institute Communications
- 18% Preț: 897.65 lei
- 18% Preț: 724.63 lei
- Preț: 383.12 lei
- 15% Preț: 650.69 lei
- 15% Preț: 644.95 lei
- 15% Preț: 644.18 lei
- 15% Preț: 661.32 lei
- 15% Preț: 649.06 lei
- 15% Preț: 648.24 lei
- 15% Preț: 651.02 lei
- 15% Preț: 650.04 lei
- Preț: 392.21 lei
- 15% Preț: 657.57 lei
- Preț: 738.20 lei
- Preț: 405.84 lei
- Preț: 402.98 lei
- 15% Preț: 644.63 lei
- 15% Preț: 641.50 lei
- 15% Preț: 710.88 lei
- 18% Preț: 737.74 lei
- 15% Preț: 697.14 lei
- 15% Preț: 647.27 lei
- 18% Preț: 788.09 lei
- 15% Preț: 701.87 lei
- 18% Preț: 905.68 lei
Preț: 795.12 lei
Preț vechi: 969.66 lei
-18% Nou
Puncte Express: 1193
Preț estimativ în valută:
152.17€ • 156.98$ • 128.79£
152.17€ • 156.98$ • 128.79£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781493998081
ISBN-10: 1493998080
Pagini: 528
Ilustrații: X, 528 p. 14 illus., 5 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.82 kg
Ediția:1st ed. 2019
Editura: Springer
Colecția Springer
Seria Fields Institute Communications
Locul publicării:New York, NY, United States
ISBN-10: 1493998080
Pagini: 528
Ilustrații: X, 528 p. 14 illus., 5 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.82 kg
Ediția:1st ed. 2019
Editura: Springer
Colecția Springer
Seria Fields Institute Communications
Locul publicării:New York, NY, United States
Cuprins
Fifty years of KdV: an integrable system (P. Deift).- Wave turbulence and complete integrability (P. Gerard).- Benjamin-Ono and Intermediate Long Wave Equations: Modeling, IST, and PDE (J.-C. Saut).- Inverse scattering and global well-posedness in one and two dimensions (P. Perry).- Dispersive asymptotics for linear and integrable equations by the d-bar steepest descent method (M. Dieng, K. McLaughin, P. Miller).- Instability of solutions in the 2d Zakharov-Kuznetzov equation (L. Farah, J. Holmer, S. Roudenko).- On the nonexistence of local, gauge-invariant Birkhoff coordinates for focussing NLS equation (T. Kappeler, P. Topalov).- Extended decay properties for generalized BBM equation (C. Kwok, C. Munoz).- Ground state solutions of the complex Gross-Pitaevskii equation (T. Mizumachi).- Inverse scattering for the massive Thirring model (D. Pelinovsky, A. Saalman).- Anomolous (rogue) waves in nature, their recurrence, and the nonlinear Schrodinger model (P. Santini, P. Grinevich).
Textul de pe ultima copertă
This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions.
The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Caracteristici
Contains pioneering works that establish the "nonlinear steepest descent" method for solving the Riemann-Hilbert problems at the heart of inverse scattering Provides an introduction and overview of the completely integral method and its applications in dynamical systems, probability, statistical mechanics, and other areas Features a comprehensive survey of results for the Benjamin-Ono and Intermediate Long-Wave equations