Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
Autor Robert Johanssonen Limba Engleză Paperback – 25 dec 2018
Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis.
After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.
What You'll Learn
- Work with vectors and matrices using NumPy
- Plot and visualize data with Matplotlib
- Perform data analysis tasks with Pandas and SciPy
- Review statistical modeling and machine learning with statsmodels and scikit-learn
- Optimize Python code using Numba and Cython
Who This Book Is For
Developers who want to understand how to use Python and its related ecosystem for numerical computing.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 186.75 lei 3-5 săpt. | |
Apress – 29 sep 2024 | 186.75 lei 3-5 săpt. | |
Apress – 25 dec 2018 | 356.23 lei 3-5 săpt. |
Preț: 356.23 lei
Preț vechi: 445.29 lei
-20% Nou
Puncte Express: 534
Preț estimativ în valută:
68.18€ • 70.63$ • 56.90£
68.18€ • 70.63$ • 56.90£
Carte disponibilă
Livrare economică 28 februarie-14 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781484242452
ISBN-10: 1484242459
Pagini: 530
Ilustrații: XXIII, 700 p. 168 illus., 63 illus. in color.
Dimensiuni: 178 x 254 x 39 mm
Greutate: 1.24 kg
Ediția:2nd ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States
ISBN-10: 1484242459
Pagini: 530
Ilustrații: XXIII, 700 p. 168 illus., 63 illus. in color.
Dimensiuni: 178 x 254 x 39 mm
Greutate: 1.24 kg
Ediția:2nd ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States
Cuprins
1. Introduction to Computing with Python.- 2. Vectors, Matrices and Multidimensional Arrays.- 3. Symbolic Computing.- 4. Plotting and Visualization.- 5. Equation Solving.- 6. Optimization.- 7. Interpolation.- 8. Integration.- 9. Ordinary Differential Equations.- 10. Sparse Matrices and Graphs.- 11. Partial Differential Equations.- 12. Data Processing and Analysis.- 13. Statistics.- 14. Statistical Modeling.- 15. Machine Learning.- 16. Bayesian Statistics.- 17. Signal and Image Processing.- 18. Data Input and Output.- 19. Code Optimization.
Recenzii
“I would recommend the textbook to those interested in learning the Python ecosystem for numerical and scientific work. I enjoyed reading the style of examples where a few lines of code are explained at a time. This style feels like I'm getting a personalized lecture from Johansson while reading the book. It will be a very nice resource on the desk of any graduate student working with Python.” (Charles Jekel, SIAM Review, Vol. 62 (2), 2020)
Notă biografică
Robert Johansson is a numerical Python expert and computational scientist who has worked with SciPy, NumPy and QuTiP, an open-source Python framework for simulating the dynamics of quantum systems.
Textul de pe ultima copertă
Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more.
Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis.
After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.
Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis.
After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.
Caracteristici
Revised and updated with new examples using the numerical and mathematical modules in Python and its standard library Understand open source numerical Python packages like NumPy, FiPy, Pillow, matplotlib and more Applications include those from business management, big data/cloud computing, financial engineering and games