Cantitate/Preț
Produs

Numerical Solutions for Partial Differential Equations: Problem Solving Using Mathematica

Autor Victor Grigor'e Ganzha, Evgenii Vasilev Vorozhtsov
en Limba Engleză Hardback – 12 iul 1996
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 33369 lei  6-8 săpt.
  CRC Press – 2 dec 2019 33369 lei  6-8 săpt.
Hardback (1) 97601 lei  6-8 săpt.
  CRC Press – 12 iul 1996 97601 lei  6-8 săpt.

Preț: 97601 lei

Preț vechi: 142981 lei
-32% Nou

Puncte Express: 1464

Preț estimativ în valută:
18681 20089$ 15570£

Carte tipărită la comandă

Livrare economică 20 decembrie 24 - 03 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780849373794
ISBN-10: 0849373794
Pagini: 362
Dimensiuni: 156 x 234 x 27 mm
Greutate: 1.02 kg
Ediția:New.
Editura: CRC Press
Colecția CRC Press

Public țintă

Academic and Professional Practice & Development

Cuprins

1. Introduction to Mathematica 2. Finite Difference Methods for Hyperbolic PDEs 3. Finite Difference Methods for Parabolic PDEs 4. Numerical Methods for Elliptic PDEs

Notă biografică

Ganzha, Victor Grigor'e; Vorozhtsov, Evgenii Vasilev

Descriere

This book describes the applications of Mathematica for the numerical solution of all classical types (hyperbolic, parabolic, and elliptic) of the partial differential equations of mathematical physics.