On Stein's Method for Infinitely Divisible Laws with Finite First Moment: SpringerBriefs in Probability and Mathematical Statistics
Autor Benjamin Arras, Christian Houdréen Limba Engleză Paperback – 26 apr 2019
Din seria SpringerBriefs in Probability and Mathematical Statistics
- Preț: 354.69 lei
- Preț: 348.79 lei
- Preț: 454.84 lei
- Preț: 360.31 lei
- Preț: 447.81 lei
- Preț: 422.47 lei
- Preț: 359.07 lei
- Preț: 166.79 lei
- 15% Preț: 447.51 lei
- Preț: 454.47 lei
- Preț: 360.11 lei
- Preț: 357.93 lei
- Preț: 357.57 lei
Preț: 369.02 lei
Nou
Puncte Express: 554
Preț estimativ în valută:
70.64€ • 75.95$ • 58.89£
70.64€ • 75.95$ • 58.89£
Carte tipărită la comandă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030150167
ISBN-10: 303015016X
Pagini: 87
Ilustrații: XI, 104 p. 1 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Probability and Mathematical Statistics
Locul publicării:Cham, Switzerland
ISBN-10: 303015016X
Pagini: 87
Ilustrații: XI, 104 p. 1 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Probability and Mathematical Statistics
Locul publicării:Cham, Switzerland
Cuprins
1 Introduction.- 2 Preliminaries.- 3 Characterization and Coupling.- 4 General Upper Bounds by Fourier Methods.- 5 Solution to Stein's Equation for Self-Decomposable Laws.- 6 Applications to Sums of Independent Random Variables.
Recenzii
“This monograph is an excellent starting point for researchers to explore this fascinating area.” (Fraser Daly, zbMATH 1447.60052, 2020)
“The book is interesting and well written. It may be recommended as a must-have item to the researchers interested in limit theorems of probability theory as well as to other probability theorists.” (Przemysław matuła, Mathematical Reviews, January, 2020)
Caracteristici
Covers connections between infinite divisibility and Stein's method First to propose a general and unifying Stein's methodology for infinitely divisible law with finite first moment Provides quantitative versions of classical weak limit theories for sum of independent random variables