Poisson Point Processes and Their Application to Markov Processes: SpringerBriefs in Probability and Mathematical Statistics
Autor Kiyosi Itô Cuvânt înainte de Shinzo Watanabe, Ichiro Shigekawaen Limba Engleză Paperback – feb 2016
Din seria SpringerBriefs in Probability and Mathematical Statistics
- Preț: 348.79 lei
- Preț: 454.84 lei
- Preț: 360.31 lei
- Preț: 447.81 lei
- Preț: 369.02 lei
- Preț: 422.47 lei
- Preț: 359.07 lei
- Preț: 166.79 lei
- 15% Preț: 447.51 lei
- Preț: 454.47 lei
- Preț: 360.11 lei
- Preț: 357.93 lei
- Preț: 357.57 lei
Preț: 354.69 lei
Nou
Puncte Express: 532
Preț estimativ în valută:
67.89€ • 72.100$ • 56.60£
67.89€ • 72.100$ • 56.60£
Carte tipărită la comandă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811002717
ISBN-10: 9811002711
Pagini: 43
Ilustrații: XI, 43 p. 3 illus.
Dimensiuni: 155 x 235 x 3 mm
Greutate: 0.09 kg
Ediția:1st ed. 2015
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Probability and Mathematical Statistics
Locul publicării:Singapore, Singapore
ISBN-10: 9811002711
Pagini: 43
Ilustrații: XI, 43 p. 3 illus.
Dimensiuni: 155 x 235 x 3 mm
Greutate: 0.09 kg
Ediția:1st ed. 2015
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Probability and Mathematical Statistics
Locul publicării:Singapore, Singapore
Public țintă
ResearchCuprins
1. Poisson point processes.- 2. Application to Markov Process.
Recenzii
“The main idea of this volume has had a profound influence on the boundary theory of Markov processes. This volume is beautifully written and it is a pleasure to read.” (Ren Ming Song, Mathematical Reviews, December, 2016)
Caracteristici
Gives a beautiful elementary treatment of general Poisson point processes in Chapter 1, especially recommended for beginners Shows how the notion of Poisson point processes with values in a function space of paths called excursions plays a key role in an extension problem of Markov processes in Chapter 2 Demonstrates how the general theory in Chapter 2 can answer completely the extension problem for the minimal diffusion on [0, 8) with an exit boundary 0 Includes supplementary material: sn.pub/extras