One-Dimensional Finite Elements: An Introduction to the FE Method
Autor Andreas Öchsner, Markus Merkelen Limba Engleză Paperback – 26 dec 2018
The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics such as plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics. Each chapter also includes a few exercise problems, with short answers provided at the end of the book.
The second edition appears with a complete revision of all figures. It also presents a complete new chapter special elements and added the thermal conduction into the analysis of rod elements. The principle of virtual work has also been introduced for the derivation of the finite-element principal equation.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (3) | 412.58 lei 38-44 zile | |
Springer – 9 noi 2014 | 412.58 lei 38-44 zile | |
Springer International Publishing – 26 dec 2018 | 579.20 lei 43-57 zile | |
Springer Berlin, Heidelberg – 29 dec 2023 | 695.23 lei 43-57 zile | |
Hardback (2) | 393.18 lei 43-57 zile | |
Springer Berlin, Heidelberg – 6 oct 2012 | 393.18 lei 43-57 zile | |
Springer International Publishing – 7 mai 2018 | 640.75 lei 43-57 zile |
Preț: 579.20 lei
Preț vechi: 681.41 lei
-15% Nou
Puncte Express: 869
Preț estimativ în valută:
110.83€ • 117.04$ • 92.23£
110.83€ • 117.04$ • 92.23£
Carte tipărită la comandă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030091576
ISBN-10: 3030091570
Pagini: 418
Ilustrații: XXIII, 418 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 2nd ed. 2018
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3030091570
Pagini: 418
Ilustrații: XXIII, 418 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 2nd ed. 2018
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Cuprins
Motivation for the Finite Element Method.- Bar Element.- Torsion bar.- Bending Element.- General 1D Element.- Plane and Spatial Frame Structures.- Beam with Shear Contribution.- Beams of Composite Materials.- Nonlinear Elasticity.- Plasticity.- Stability (Buckling).- Dynamics.- Special Elements.
Notă biografică
Andreas Öchsner, born 1970, is Full Professor in the Department Solid Mechanics and Design at the University of Technology Malaysia (UTM), Malaysia and Head of the Advanced Materials and Structure Lab. Having obtained a Diploma Degree (Dipl.-Ing.) in Aeronautical Engineering at the University of Stuttgart (1997), Germany, he spent the time from 1997-2003 at the University of Erlangen-Nuremberg as a research and teaching assistant to obtain his Doctor of Engineering Sciences (Dr.-Ing.). From 2003-2006, he worked as Assistant Professor in the Department of Mechanical Engineering and Head of the Cellular Metals Group affiliated with the University of Aveiro, Portugal. His research interests are related to experimental and computational mechanics, cellular metals and thin structures and interphases. He has published over 290 scientific publications, comprising 11 research monographs, 13 book chapters and one teaching book on finite element methods. He is the general chairman of six international conferences on computational and experimental engineering (ACE-X series) and eight international conferences in the area of heat and mass transfer (DSL series). His editorial work comprises posts as Editor-in-chief of the international journal Continuum Mechanics and Thermodynamics (Springer), Editor-in-chief of the Springer book series on Advanced Structured Materials and Editor of SpringerBriefs in Applied Sciences and Technology: Computational Mechanics. His research activities were recognised in 2010 by the award of a higher doctorate degree (D.Sc.) by the University of Newcastle, Australia.
Markus Merkel, born 1967, is Full Professor at Aalen University of Applied Sciences. He graduated 1993 at the University of Erlangen-Nuremberg (Germany) in Mechanical Engineering and finished his PhD-studies in 1998. Between 1999 and 2004, Markus Merkel worked at the International Technical Development Centre of Adam Opel AG. He became Professer in 2004 for Engineering Design and Computational Mechanics at the Faculty of Mechanical Engineering and Materials Science. Markus Merkel is Head of the Institute of Virtual Product Development.
Markus Merkel, born 1967, is Full Professor at Aalen University of Applied Sciences. He graduated 1993 at the University of Erlangen-Nuremberg (Germany) in Mechanical Engineering and finished his PhD-studies in 1998. Between 1999 and 2004, Markus Merkel worked at the International Technical Development Centre of Adam Opel AG. He became Professer in 2004 for Engineering Design and Computational Mechanics at the Faculty of Mechanical Engineering and Materials Science. Markus Merkel is Head of the Institute of Virtual Product Development.
Textul de pe ultima copertă
This textbook presents finite element methods using exclusively one-dimensional elements. It presents the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader will easily understand the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. Although the description is easy, it remains scientifically correct.
The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics such as plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics. Each chapter also includes a few exercise problems, with short answers provided at the end of the book.
The second edition appears with a complete revision of all figures. It also presents a complete new chapter special elements and added the thermal conduction into the analysis of rod elements. The principle of virtual work has also been introduced for the derivation of the finite-element principal equation.
The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics such as plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics. Each chapter also includes a few exercise problems, with short answers provided at the end of the book.
The second edition appears with a complete revision of all figures. It also presents a complete new chapter special elements and added the thermal conduction into the analysis of rod elements. The principle of virtual work has also been introduced for the derivation of the finite-element principal equation.
Caracteristici
New edition now includes Special Finite Elements, thermal conduction into the analysis of rod elements, and the principle of virtual work Introduces a new educational approach using only one-dimensional elements Uses intuitive mathematics and is scientifically exact Many examples facilitate the understanding plus solutions manual for instructors
Recenzii
From
the
reviews:
“As its title describes, this book is about the finite element method applied to one-dimensional problems. … several problems of interest are indeed modeled using a single space variable. This book should appeal to the mechanical engineering community.” (Alexandre L. Madureira, Mathematical Reviews, January, 2014)
“This book is an excellent addition to course resources on finite elements. … Each chapter includes worked examples and a few exercise problems. Short answers for the exercises, provided at the end of the book, will be helpful to students. A valuable course resource for students in mechanical, civil, aerospace, and other engineering curricula and a useful acquisition for academic libraries. Summing Up: Highly recommended. Upper-division undergraduates, graduate students, practicing engineers.” (R. Kolar, Choice, Vol. 51 (1), September, 2013)
“As its title describes, this book is about the finite element method applied to one-dimensional problems. … several problems of interest are indeed modeled using a single space variable. This book should appeal to the mechanical engineering community.” (Alexandre L. Madureira, Mathematical Reviews, January, 2014)
“This book is an excellent addition to course resources on finite elements. … Each chapter includes worked examples and a few exercise problems. Short answers for the exercises, provided at the end of the book, will be helpful to students. A valuable course resource for students in mechanical, civil, aerospace, and other engineering curricula and a useful acquisition for academic libraries. Summing Up: Highly recommended. Upper-division undergraduates, graduate students, practicing engineers.” (R. Kolar, Choice, Vol. 51 (1), September, 2013)
Descriere
Descriere de la o altă ediție sau format:
Presenting a complex methodology in an easily understandable but mathematically correct fashion, this book reviews finite element methods using exclusively one-dimensional elements. Advanced topics include plasticity and the mechanics of composite materials.
Presenting a complex methodology in an easily understandable but mathematically correct fashion, this book reviews finite element methods using exclusively one-dimensional elements. Advanced topics include plasticity and the mechanics of composite materials.