Cantitate/Preț
Produs

Ontology Learning and Population from Text: Algorithms, Evaluation and Applications

Autor Philipp Cimiano
en Limba Engleză Paperback – 29 oct 2010
In the last decade, ontologies have received much attention within computer science and related disciplines, most often as the semantic web. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications discusses ontologies for the semantic web, as well as knowledge management, information retrieval, text clustering and classification, as well as natural language processing.
Ontology Learning and Population from Text: Algorithms, Evaluation and Applications is structured for research scientists and practitioners in industry. This book is also suitable for graduate-level students in computer science.
 
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 83846 lei  6-8 săpt.
  Springer Us – 29 oct 2010 83846 lei  6-8 săpt.
Hardback (1) 63330 lei  6-8 săpt.
  Springer Us – 12 oct 2006 63330 lei  6-8 săpt.

Preț: 83846 lei

Preț vechi: 104807 lei
-20% Nou

Puncte Express: 1258

Preț estimativ în valută:
16047 16929$ 13373£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441940322
ISBN-10: 1441940324
Pagini: 376
Ilustrații: XXVIII, 347 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Preliminaries.- Ontologies.- Ontology Learning from Text.- Basics.- Datasets.- Methods and Applications.- Concept Hierarchy Induction.- Learning Attributes and Relations.- Population.- Applications.- Conclusion.- Contribution and Outlook.- Concluding Remarks.

Textul de pe ultima copertă

Standard formalisms for knowledge representation such as RDFS or OWL have been recently developed by the semantic web community and are now in place. However, the crucial question still remains: how will we acquire all the knowledge available in people's heads to feed our machines?
Natural language is THE means of communication for humans, and consequently texts are massively available on the Web. Terabytes and terabytes of texts containing opinions, ideas, facts and information of all sorts are waiting to be mined for interesting patterns and relationships, or used to annotate documents to facilitate their retrieval. A semantic web which ignores the massive amount of information encoded in text, might actually be a semantic, but not a very useful, web. Knowledge acquisition, and in particular ontology learning from text, actually has to be regarded as a crucial step within the vision of a semantic web.
Ontology Learning and Population from Text: Algorithms, Evaluation and Applications presents approaches for ontology learning from text and will be relevant for researchers working on text mining, natural language processing, information retrieval, semantic web and ontologies. Containing introductory material and a quantity of related work on the one hand, but also detailed descriptions of algorithms, evaluation procedures etc. on the other, this book is suitable for novices, and experts in the field, as well as lecturers.
Datasets, algorithms and course material can be downloaded at http://www.cimiano.de/olp. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications is designed for practitioners in industry, as well researchers and graduate-level students in computer science.

Caracteristici

Includes the comparison of different methods in order to provide guidelines for ontology engineers Includes an analysis of the impact of ontology learning for certain applications Includes supplementary material: sn.pub/extras