Cantitate/Preț
Produs

Optimal Shape Design: Lectures given at the Joint C.I.M./C.I.M.E. Summer School held in Troia (Portugal), June 1-6, 1998: Lecture Notes in Mathematics, cartea 1740

Autor B. Kawohl Editat de A. Cellina Autor O. Pironneau Editat de A. Ornelas Autor L. Tartar, J.-P. Zolesio
en Limba Engleză Paperback – 16 noi 2000
Optimal Shape Design is concerned with the optimization of some performance criterion dependent (besides the constraints of the problem) on the "shape" of some region. The main topics covered are: the optimal design of a geometrical object, for instance a wing, moving in a fluid; the optimal shape of a region (a harbor), given suitable constraints on the size of the entrance to the harbor, subject to incoming waves; the optimal design of some electrical device subject to constraints on the performance. The aim is to show that Optimal Shape Design, besides its interesting industrial applications, possesses nontrivial mathematical aspects. The main theoretical tools developed here are the homogenization method and domain variations in PDE. The style is mathematically rigorous, but specifically oriented towards applications, and it is intended for both pure and applied mathematicians. The reader is required to know classical PDE theory and basic functional analysis.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 46075 lei

Nou

Puncte Express: 691

Preț estimativ în valută:
8818 9171$ 7379£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540679714
ISBN-10: 3540679715
Pagini: 402
Ilustrații: XII, 392 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.56 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, C.I.M.E. Foundation Subseries

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Some nonconvex shape optimization problems.- An introduction to the homogenization method in optimal design.- Shape analysis and weak flow.- Optimal shape design by local boundary variations.