Optimal Shape Design for Elliptic Systems: Scientific Computation
Autor O. Pironneauen Limba Engleză Paperback – 4 mai 2012
Din seria Scientific Computation
- 18% Preț: 991.75 lei
- 18% Preț: 721.97 lei
- 18% Preț: 864.21 lei
- 18% Preț: 1076.66 lei
- Preț: 376.93 lei
- 20% Preț: 901.99 lei
- Preț: 389.46 lei
- Preț: 375.61 lei
- 15% Preț: 635.87 lei
- Preț: 369.43 lei
- 18% Preț: 1079.43 lei
- Preț: 439.74 lei
- Preț: 378.24 lei
- 18% Preț: 922.78 lei
- 15% Preț: 630.62 lei
- 15% Preț: 578.81 lei
- 18% Preț: 915.58 lei
- 15% Preț: 490.74 lei
- Preț: 378.62 lei
- 15% Preț: 634.31 lei
- 18% Preț: 929.96 lei
- 15% Preț: 635.25 lei
- 15% Preț: 625.55 lei
- 15% Preț: 630.80 lei
- Preț: 377.09 lei
- 18% Preț: 930.87 lei
- 18% Preț: 1097.07 lei
- 18% Preț: 939.79 lei
- 15% Preț: 680.67 lei
- Preț: 389.61 lei
- 15% Preț: 580.87 lei
- Preț: 374.65 lei
- Preț: 383.65 lei
- Preț: 374.13 lei
- 18% Preț: 1074.84 lei
- 15% Preț: 489.75 lei
- 15% Preț: 579.31 lei
- 15% Preț: 635.25 lei
Preț: 616.33 lei
Preț vechi: 725.10 lei
-15% Nou
Puncte Express: 924
Preț estimativ în valută:
117.96€ • 122.95$ • 98.20£
117.96€ • 122.95$ • 98.20£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642877247
ISBN-10: 3642877249
Pagini: 184
Ilustrații: XII, 168 p. 29 illus.
Dimensiuni: 152 x 229 x 17 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642877249
Pagini: 184
Ilustrații: XII, 168 p. 29 illus.
Dimensiuni: 152 x 229 x 17 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Elliptic Partial Differential Equations.- 1.1 Introduction.- 1.2 Green’s Formula.- 1.3 Sobolev Spaces.- 1.4 Linear Elliptic PDE of Order 2.- 1.5 Numerical Solutions of Linear Elliptic Equations of Order 2.- 1.6 Other Elliptic Equations.- 1.7 Continuous Dependence on the Boundary.- 2. Problem Statement.- 2.1 Introduction.- 2.2 Definition.- 2.3 Examples.- 2.4 Principles of Solution.- 2.5 Future of Optimal Design Applications in Industry.- 2.6 Historical Background and References.- 3. Existence of Solutions.- 3.1 Introduction.- 3.2 Dirichlet Conditions.- 3.3 Neumann Boundary Conditions.- 3.4 Conclusion.- 4. Optimization Methods.- 4.1 Orientation.- 4.2 Problem Statement.- 4.3 Gradients.- 4.4 Method of Steepest Descent.- 4.5 Newton Method.- 4.6 Conjugate Gradient Method.- 4.7 Optimization with Equality Constraints.- 4.8 Optimization with Inequality Constraints.- 5. Design Problems Solved by Standard Optimal Control Theory.- 5.1 Introduction.- 5.2 Optimization of a Thin Wing.- 5.3 Optimization of an Almost Straight Nozzle.- 5.4 Thickness Optimization Problem.- 6. Optimality Conditions.- 6.1 Introduction.- 6.2 Distributed Observation on a Fixed Domain.- 6.3 Other Cases with Linear PDE.- 7. Discretization with Finite Elements.- 7.1 Introduction.- 7.2 Neumann Problem.- 7.3 Dirichlet Conditions.- 7.4 Other Problems.- 7.5 Convergence.- 8. Other Methods.- 8.1 Introduction.- 8.2 Method of Mappings.- 8.3 Finite Difference Discretization.- 8.4 Method of Characteristic Functions.- 8.5 Discretization by the Boundary Element Method.- 9. Two Industrial Examples.- 9.1 Introduction.- 9.2 Optimization of Electromagnets.- 9.3 Optimization of Airfoils.- 9.4 Conclusion.- References.