Numerical Methods in Fluid Dynamics: Scientific Computation
Autor M. Holten Limba Engleză Paperback – 9 mar 2012
Din seria Scientific Computation
- 18% Preț: 1021.05 lei
- 18% Preț: 743.27 lei
- 18% Preț: 889.75 lei
- 18% Preț: 1108.51 lei
- Preț: 387.96 lei
- 20% Preț: 902.00 lei
- Preț: 400.85 lei
- 15% Preț: 654.62 lei
- Preț: 380.25 lei
- 18% Preț: 1111.34 lei
- Preț: 452.62 lei
- Preț: 389.31 lei
- 18% Preț: 950.03 lei
- 15% Preț: 649.22 lei
- 15% Preț: 595.86 lei
- 18% Preț: 942.63 lei
- 15% Preț: 505.18 lei
- Preț: 389.70 lei
- 15% Preț: 653.00 lei
- 18% Preț: 957.44 lei
- 15% Preț: 653.98 lei
- 15% Preț: 643.99 lei
- 15% Preț: 649.39 lei
- Preț: 388.13 lei
- 18% Preț: 958.38 lei
- 18% Preț: 1129.52 lei
- 18% Preț: 967.56 lei
- 15% Preț: 700.75 lei
- Preț: 401.03 lei
- 15% Preț: 597.99 lei
- Preț: 385.62 lei
- Preț: 394.87 lei
- Preț: 385.08 lei
- 18% Preț: 1106.63 lei
- 15% Preț: 504.17 lei
- 15% Preț: 596.36 lei
- 15% Preț: 653.98 lei
Preț: 386.61 lei
Nou
Puncte Express: 580
Preț estimativ în valută:
73.100€ • 76.26$ • 62.47£
73.100€ • 76.26$ • 62.47£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642963728
ISBN-10: 3642963722
Pagini: 268
Ilustrații: VIII, 256 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642963722
Pagini: 268
Ilustrații: VIII, 256 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. General Introduction.- 1.1 Introduction.- 1.2 Boundary Value Problems and Initial Value Problems.- 1.3 One Dimensional Unsteady Flow Characteristics.- 1.4 Steady Supersonic Plane or Axi-Symmetric Flow. Equations of Motion in Characteristic Form.- 1.5 Basic Concepts Used in Finite Difference Methods.- References.- 2. The Godunov Schemes.- 2.1 The Origins of Godunov’s First Scheme.- 2.2 Godunov’s First Scheme. One Dimensional Eulerian Equations.- 2.3 Godunov’s First Scheme in Two and More Dimensions.- 2.4 Godunov’s Second Scheme.- 2.5 The Double Sweep Method.- 2.6 Execution of the Second Scheme on the Intermediate Layer.- 2.7 Boundary Conditions on the Intermediate Layer.- 2.8 Procedure on the Final Layer.- 2.9 Applications of the Second Godunov Scheme.- References.- 3. The BVLR Method.- 3.1 Description of Method for Supersonic Flow.- 3.2 Extensions to Mixed Subsonic-Supersonic Flow. The Blunt Body Problem.- 3.3 The Double Sweep Method for Unsteady Three-Dimensional Flow.- 3.4 Worked Problem. Application to Circular Arc Airfoil.- 3.5 Results and Discussion.- References.- 4. The Method of Characteristics for Three-Dimensional Problems in Gas Dynamics.- 4.1 Introduction.- 4.2 Bicharacteristics Method (Butler).- 4.3 Optimal Characteristics Methods (Bruhn and Haack, Schaetz).- 4.4 Near Characteristics Method (Sauer).- References.- 5. The Method of Integral Relations.- 5.1 Introduction.- 5.2 General Formulation. Model Problem.- 5.3 Flow Past Ellipses.- 5.4 The Supersonic Blunt Body Problem.- 5.5 Transonic Flow.- 5.6 Incompressible Laminar Boundary Layer Equations. Basic Formulation.- 5.7 The Method in the Compressible Case.- 5.8 Laminar Boundary-Layers with Suction or Injection.- 5.9 Extension to Separated Flows.- 5.10 Application to Supersonic Wakes and BaseFlows.- 5.11 Application to Three-Dimensional Laminar Boundary Layers.- 5.12 A Modified Form of the Method of Integral Relations.- 5.13 Application to Viscous Supersonic Conical Flows.- 5.14 Extension to Unsteady Laminar Boundary Layers.- Model Problem (Chu and Gong).- References.- 6. Telenin’s Method and the Method of Lines.- 6.1 Introduction.- 6.2 Solution of Laplace’s Equation by Telenin’s Method.- 6.3 Solution of a Model Mixed Type Equation by Telenin’s Method.- 6.4 Application of Telenin’s Method to the Symmetrical Blunt Body Problem.- 6.5 Extension to Unsymmetrical Blunt Body Flows.- 6.6 Application of Telenin’s Method to the Supersonic Yawed Cone Problem.- 6.7 The Method of Lines. General Description.- 6.8 Applications of the Method of Lines.- 6.9 Powell’s Method Applied to Two Point Boundary Value Problems.- Telenin’s Method. Model Problems.- References.