Spectral Methods in Fluid Dynamics: Scientific Computation
Autor Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A., Jr. Zangen Limba Engleză Paperback – 15 mar 1991
Din seria Scientific Computation
- 18% Preț: 982.36 lei
- 18% Preț: 715.14 lei
- 18% Preț: 856.04 lei
- 18% Preț: 1066.46 lei
- Preț: 373.39 lei
- 20% Preț: 902.00 lei
- Preț: 385.80 lei
- Preț: 372.09 lei
- 15% Preț: 629.86 lei
- Preț: 365.96 lei
- 18% Preț: 1069.20 lei
- Preț: 435.60 lei
- Preț: 374.70 lei
- 18% Preț: 914.03 lei
- 15% Preț: 624.67 lei
- 15% Preț: 573.36 lei
- 18% Preț: 906.91 lei
- 15% Preț: 486.11 lei
- Preț: 375.06 lei
- 15% Preț: 628.31 lei
- 18% Preț: 921.17 lei
- 15% Preț: 629.24 lei
- 15% Preț: 619.63 lei
- 15% Preț: 624.84 lei
- Preț: 373.56 lei
- 18% Preț: 922.07 lei
- 18% Preț: 1086.69 lei
- 18% Preț: 930.91 lei
- 15% Preț: 674.25 lei
- Preț: 385.96 lei
- Preț: 371.14 lei
- Preț: 380.04 lei
- Preț: 370.62 lei
- 18% Preț: 1064.66 lei
- 15% Preț: 485.13 lei
- 15% Preț: 573.85 lei
- 15% Preț: 629.24 lei
Preț: 575.40 lei
Preț vechi: 676.95 lei
-15% Nou
Puncte Express: 863
Preț estimativ în valută:
110.12€ • 116.90$ • 91.76£
110.12€ • 116.90$ • 91.76£
Carte tipărită la comandă
Livrare economică 27 decembrie 24 - 10 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540522058
ISBN-10: 3540522050
Pagini: 584
Ilustrații: XVI, 568 p. 6 illus.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.81 kg
Ediția:1st ed. 1988. Corr. 2nd printing
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540522050
Pagini: 584
Ilustrații: XVI, 568 p. 6 illus.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.81 kg
Ediția:1st ed. 1988. Corr. 2nd printing
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1. Historical Background.- 1.2. Some Examples of Spectral Methods.- 1.3. The Equations of Fluid Dynamics.- 1.4. Spectral Accuracy for a Two-Dimensional Fluid Calculation.- 1.5. Three-Dimensional Applications in Fluids.- 2. Spectral Approximation.- 2.1. The Fourier System.- 2.2. Orthogonal Polynomials in ( — 1, 1).- 2.3. Legendre Polynomials.- 2.4. Chebyshev Polynomials.- 2.5. Generalizations.- 3. Fundamentals of Spectral Methods for PDEs.- 3.1. Spectral Projection of the Burgers Equation.- 3.2. Convolution Sums.- 3.3. Boundary Conditions.- 3.4. Coordinate Singularities.- 3.5. Two-Dimensional Mapping.- 4. Temporal Discretization.- 4.1. Introduction.- 4.2. The Eigenvalues of Basic Spectral Operators.- 4.3. Some Standard Schemes.- 4.4. Special Purpose Schemes.- 4.5. Conservation Forms.- 4.6. Aliasing.- 5. Solution Techniques for Implicit Spectral Equations.- 5.1. Direct Methods.- 5.2. Fundamentals of Iterative Methods.- 5.3. Conventional Iterative Methods.- 5.4. Multidimensional Preconditioning.- 5.5. Spectral Multigrid Methods.- 5.6. A Semi-Implicit Method for the Navier—Stokes Equations.- 6. Simple Incompressible Flows.- 6.1. Burgers Equation.- 6.2. Shear Flow Past a Circle.- 6.3. Boundary-Layer Flows.- 6.4. Linear Stability.- 7. Some Algorithms for Unsteady Navier—Stokes Equations.- 7.1. Introduction.- 7.2. Homogeneous Flows.- 7.3. Inhomogeneous Flows.- 7.4. Flows with Multiple Inhomogeneous Directions.- 7.5. Mixed Spectral/Finite-Difference Methods.- 8. Compressible Flow.- 8.1. Introduction.- 8.2. Boundary Conditions for Hyperbolic Problems.- 8.3. Basic Results for Scalar Nonsmooth Problems.- 8.4. Homogeneous Turbulence.- 8.5. Shock-Capturing.- 8.6. Shock-Fitting.- 8.7. Reacting Flows.- 9. Global Approximation Results.- 9.1. FourierApproximation.- 9.2. Sturm—Liouville Expansions.- 9.3. Discrete Norms.- 9.4. Legendre Approximations.- 9.5. Chebyshev Approximations.- 9.6. Other Polynomial Approximations.- 9.7. Approximation Results in Several Dimensions.- 10. Theory of Stability and Convergence for Spectral Methods.- 10.1. The Three Examples Revisited.- 10.2. Towards a General Theory.- 10.3. General Formulation of Spectral Approximations to Linear Steady Problems.- 10.4. Galerkin, Collocation and Tau Methods.- 10.5. General Formulation of Spectral Approximations to Linear Evolution Equations.- 10.6. The Error Equation.- 11. Steady, Smooth Problems.- 11.1. The Poisson Equation.- 11.2. Advection-Diffusion Equation.- 11.3. Navier—Stokes Equations.- 11.4. The Eigenvalues of Some Spectral Operators.- 12. Transient, Smooth Problems.- 12.1. Linear Hyperbolic Equations.- 12.2. Heat Equation.- 12.3. Advection-Diffusion Equation.- 13. Domain Decomposition Methods.- 13.1. Introduction.- 13.2. Patching Methods.- 13.3. Variational Methods.- 13.4. The Alternating Schwarz Method.- 13.5. Mathematical Aspects of Domain Decomposition Methods.- 13.6. Some Stability and Convergence Results.- Appendices.- A. Basic Mathematical Concepts.- B. Fast Fourier Transforms.- C. Jacobi—Gauss—Lobatto Roots.- References.