Spectral Methods in Fluid Dynamics: Scientific Computation
Autor Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A., Jr. Zangen Limba Engleză Paperback – 15 mar 1991
Din seria Scientific Computation
- 18% Preț: 1000.37 lei
- 18% Preț: 728.24 lei
- 18% Preț: 871.72 lei
- 18% Preț: 1086.03 lei
- Preț: 380.17 lei
- 20% Preț: 902.00 lei
- Preț: 392.79 lei
- Preț: 378.83 lei
- 15% Preț: 641.38 lei
- Preț: 372.60 lei
- 18% Preț: 1088.82 lei
- Preț: 443.52 lei
- Preț: 381.50 lei
- 18% Preț: 930.78 lei
- 15% Preț: 636.09 lei
- 15% Preț: 583.82 lei
- 18% Preț: 923.52 lei
- 15% Preț: 494.97 lei
- Preț: 381.87 lei
- 15% Preț: 639.80 lei
- 18% Preț: 938.04 lei
- 15% Preț: 640.75 lei
- 15% Preț: 630.97 lei
- 15% Preț: 636.27 lei
- Preț: 380.33 lei
- 18% Preț: 938.95 lei
- 18% Preț: 1106.62 lei
- 18% Preț: 947.96 lei
- 15% Preț: 686.57 lei
- Preț: 392.97 lei
- Preț: 377.87 lei
- Preț: 386.95 lei
- Preț: 377.34 lei
- 18% Preț: 1084.18 lei
- 15% Preț: 493.99 lei
- 15% Preț: 584.33 lei
- 15% Preț: 640.75 lei
Preț: 585.91 lei
Preț vechi: 689.30 lei
-15% Nou
Puncte Express: 879
Preț estimativ în valută:
112.15€ • 117.59$ • 92.66£
112.15€ • 117.59$ • 92.66£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540522058
ISBN-10: 3540522050
Pagini: 584
Ilustrații: XVI, 568 p. 6 illus.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.81 kg
Ediția:1st ed. 1988. Corr. 2nd printing
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540522050
Pagini: 584
Ilustrații: XVI, 568 p. 6 illus.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.81 kg
Ediția:1st ed. 1988. Corr. 2nd printing
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1. Historical Background.- 1.2. Some Examples of Spectral Methods.- 1.3. The Equations of Fluid Dynamics.- 1.4. Spectral Accuracy for a Two-Dimensional Fluid Calculation.- 1.5. Three-Dimensional Applications in Fluids.- 2. Spectral Approximation.- 2.1. The Fourier System.- 2.2. Orthogonal Polynomials in ( — 1, 1).- 2.3. Legendre Polynomials.- 2.4. Chebyshev Polynomials.- 2.5. Generalizations.- 3. Fundamentals of Spectral Methods for PDEs.- 3.1. Spectral Projection of the Burgers Equation.- 3.2. Convolution Sums.- 3.3. Boundary Conditions.- 3.4. Coordinate Singularities.- 3.5. Two-Dimensional Mapping.- 4. Temporal Discretization.- 4.1. Introduction.- 4.2. The Eigenvalues of Basic Spectral Operators.- 4.3. Some Standard Schemes.- 4.4. Special Purpose Schemes.- 4.5. Conservation Forms.- 4.6. Aliasing.- 5. Solution Techniques for Implicit Spectral Equations.- 5.1. Direct Methods.- 5.2. Fundamentals of Iterative Methods.- 5.3. Conventional Iterative Methods.- 5.4. Multidimensional Preconditioning.- 5.5. Spectral Multigrid Methods.- 5.6. A Semi-Implicit Method for the Navier—Stokes Equations.- 6. Simple Incompressible Flows.- 6.1. Burgers Equation.- 6.2. Shear Flow Past a Circle.- 6.3. Boundary-Layer Flows.- 6.4. Linear Stability.- 7. Some Algorithms for Unsteady Navier—Stokes Equations.- 7.1. Introduction.- 7.2. Homogeneous Flows.- 7.3. Inhomogeneous Flows.- 7.4. Flows with Multiple Inhomogeneous Directions.- 7.5. Mixed Spectral/Finite-Difference Methods.- 8. Compressible Flow.- 8.1. Introduction.- 8.2. Boundary Conditions for Hyperbolic Problems.- 8.3. Basic Results for Scalar Nonsmooth Problems.- 8.4. Homogeneous Turbulence.- 8.5. Shock-Capturing.- 8.6. Shock-Fitting.- 8.7. Reacting Flows.- 9. Global Approximation Results.- 9.1. FourierApproximation.- 9.2. Sturm—Liouville Expansions.- 9.3. Discrete Norms.- 9.4. Legendre Approximations.- 9.5. Chebyshev Approximations.- 9.6. Other Polynomial Approximations.- 9.7. Approximation Results in Several Dimensions.- 10. Theory of Stability and Convergence for Spectral Methods.- 10.1. The Three Examples Revisited.- 10.2. Towards a General Theory.- 10.3. General Formulation of Spectral Approximations to Linear Steady Problems.- 10.4. Galerkin, Collocation and Tau Methods.- 10.5. General Formulation of Spectral Approximations to Linear Evolution Equations.- 10.6. The Error Equation.- 11. Steady, Smooth Problems.- 11.1. The Poisson Equation.- 11.2. Advection-Diffusion Equation.- 11.3. Navier—Stokes Equations.- 11.4. The Eigenvalues of Some Spectral Operators.- 12. Transient, Smooth Problems.- 12.1. Linear Hyperbolic Equations.- 12.2. Heat Equation.- 12.3. Advection-Diffusion Equation.- 13. Domain Decomposition Methods.- 13.1. Introduction.- 13.2. Patching Methods.- 13.3. Variational Methods.- 13.4. The Alternating Schwarz Method.- 13.5. Mathematical Aspects of Domain Decomposition Methods.- 13.6. Some Stability and Convergence Results.- Appendices.- A. Basic Mathematical Concepts.- B. Fast Fourier Transforms.- C. Jacobi—Gauss—Lobatto Roots.- References.