Cantitate/Preț
Produs

Orthopedic Biomaterials : Progress in Biology, Manufacturing, and Industry Perspectives

Editat de Bingyun Li, Thomas Webster
en Limba Engleză Hardback – 6 sep 2018
This book covers the latest progress in the biology and manufacturing of orthopedic biomaterials, as well as key industry perspectives. Topics covered include the development of biomaterial-based medical products for orthopedic applications, anti-infection technologies for orthopedic implants, additive manufacturing of orthopedic implants, and more. This is an ideal book for graduate students, researchers and professionals working with orthopedic biomaterials and tissue engineering.
This book also: Provides an industry perspective on technologies to prevent orthopedic implant related infection
Thoroughly covers how to modulate innate inflammatory reactions in the application of orthopedic biomaterials
Details the state-of-the-art research on 3D printed porous bone constructs
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 157780 lei  6-8 săpt.
  Springer International Publishing – 14 ian 2019 157780 lei  6-8 săpt.
Hardback (1) 158479 lei  6-8 săpt.
  Springer International Publishing – 6 sep 2018 158479 lei  6-8 săpt.

Preț: 158479 lei

Preț vechi: 166820 lei
-5% Nou

Puncte Express: 2377

Preț estimativ în valută:
30330 31505$ 25193£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319895413
ISBN-10: 3319895419
Pagini: 440
Ilustrații: VIII, 496 p. 174 illus., 126 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.88 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Part I Design, Manufacturing, Assessment, and Applications. - Nanotechnology for Orthopedic Applications: From Manufacturing Processes to Clinical Applications. - Additive Manufacturing of Orthopedic Implants. - 3 D Printed Porous Bone Constructs. - Biopolymer Based Interfacial Tissue Engineering for Arthritis. - Performance of Bore-Cone Taper Junctions on Explanted Total Knee Replacements with Modular Stem Extensions: Mechanical Disassembly and Corrosion Analysis of Two Designs. - Wear Simulation Testing for Joint Implants. - Mechanical Stimulation Methods for Cartilage Tissue Engineering. - Mechanically Assisted Electrochemical Degradation of Alumina-TiC Composites. - Part II Biology and Clinical and Industrial Perspectives. - Biomaterials in Total Joint Arthroplasty. - Modulating Innate Inflammatory Reactions in the Application of Orthopedic Biomaterials. - Anti-Infection Technologies for Orthopedic Implants: Materials and Considerations for Commercial Development. - Platelet Rich Plasma: Biology and Clinical Usage in Orthopedics. - Bioresorbable Materials for Orthopedic Applications (Lactide and Glycolide Based). - The Role of Polymer Additives in Enhancing the Response of Calcium Phosphate Cement. - Biological Fixation: The Role of Screw Surface Design. - Fracture Fixation Biomechanics and Biomaterials. - Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges. - Progress of Bioceramic and Bioglass Bone Scaffolds for Load-Bearing Applications.

Notă biografică

Bingyun Li is a full Professor with tenure at School of Medicine West Virginia University. He is a member of the Society for Biomaterials (SFB), Orthopedic Research Society (ORS), American Society for Microbiology (ASM), Materials Research Society (MRS), American Chemical Society (ACS), International Chinese Musculoskeletal Research Society (ICMRS), and Chinese Association for Biomaterials (CAB). Professor Li has served as topic chair of Infection and Inflammation of the ORS Program Committee, vice-chair and chair of Orthopedic Biomaterials Special Interest Group of SFB, Chief Editor of ICMRS Newsletter, and inaugural treasurer of CAB. Professor Li’s research focuses on advanced materials, nanomedicine, infection, immunology, and drug delivery. He has supervised 84 trainees, and his lab group has published more than 76 peer-reviewed articles, nine book chapters, 12 provisional/full patents, and 122 abstracts. Professor Li has given 48 invited talks and has received multiple prestigious awards including the Berton Rahn Prize from AO Foundation, the Pfizer Best Scientific Paper Award from Asia Pacific Orthopedic Association, and the Collaborative Exchange Award from Orthopedic Research Society.
Thomas Webster is the Chemical Engineering Department Chair and Art Zafiropoulo Endowed Chair at Northeastern University. Prof. Webster has graduated 144 students. His lab group published 9 textbooks, 48 book chapters, 403 articles, and 32 provisional/full patents. Prof. Webster has received numerous honors: 2012, Fellow, American Institute for Medical and Biological Engineering; 2013, Fellow, Biomedical Engineering Society; 2015, Wenzhou 580 Award; 2015, Zheijang 1000 Talent Program; 2016, IMRC Chinese Academy of Science Lee-Hsun Lecture Award; 2016, Fellow, Biomaterials Science and Engineering; and 2016, Acta Biomaterialia Silver Award. He also frequently appears on the BBC, NBC, ABC, Fox, National Geographic, Discovery Channel and many other news outlets talking about science. Prof. Webster was also recently inducted as a Fellow into the National Academy of Inventors based on the formation of 11 companies with 4 FDA approved products in orthopedics. Prof. Webster was also recently inducted as a Fellow into the National Academy of Inventors based on the formation of 11 companies with 4 FDA approved products in orthopedics.

Textul de pe ultima copertă

This book covers the latest progress in the biology and manufacturing of orthopedic biomaterials, as well as key industry perspectives. Topics covered include the development of biomaterial-based medical products for orthopedic applications, anti-infection technologies for orthopedic implants, additive manufacturing of orthopedic implants, and more. This is an ideal book for graduate students, researchers and professionals working with orthopedic biomaterials and tissue engineering.
This book also:
Provides an industry perspective on technologies to prevent orthopedic implant related infection
Thoroughly covers how to modulate innate inflammatory reactions in the application of orthopedic biomaterials
Details the state-of-the-art research on 3D printed porous bone constructs

Caracteristici

Provides an industry perspective on technologies related to orthopedic biomaterials
Thoroughly details the modulation of innate inflammatory reactions in the application of orthopedic biomaterials
Details state-of-the-art research on additive manufacturing of orthopedic implants