Pancyclic and Bipancyclic Graphs: SpringerBriefs in Mathematics
Autor John C. George, Abdollah Khodkar, W.D. Wallisen Limba Engleză Paperback – 27 mai 2016
The following questions are highlighted through the book:
- What is the smallest possible number of edges in a pancyclic graph with v vertices?
- When do pancyclic graphs exist with exactly one cycle of every possible length?
- What is the smallest possible number of edges in a bipartite graph with v vertices?
- When do bipartite graphs exist with exactly one cycle of every possible length?
Din seria SpringerBriefs in Mathematics
- Preț: 378.46 lei
- Preț: 380.84 lei
- Preț: 380.29 lei
- Preț: 383.93 lei
- Preț: 350.11 lei
- Preț: 352.28 lei
- Preț: 351.57 lei
- Preț: 378.92 lei
- Preț: 341.60 lei
- Preț: 452.06 lei
- Preț: 379.48 lei
- Preț: 446.65 lei
- Preț: 351.57 lei
- 15% Preț: 463.68 lei
- Preț: 377.95 lei
- Preț: 378.12 lei
- Preț: 352.28 lei
- Preț: 379.68 lei
- Preț: 376.80 lei
- Preț: 351.90 lei
- Preț: 380.07 lei
- Preț: 352.28 lei
- Preț: 350.81 lei
- Preț: 343.72 lei
- Preț: 349.41 lei
- 15% Preț: 464.18 lei
- Preț: 351.90 lei
- 15% Preț: 464.32 lei
- Preț: 381.00 lei
- Preț: 344.47 lei
- 15% Preț: 462.19 lei
- Preț: 377.18 lei
- Preț: 378.34 lei
- Preț: 345.45 lei
- Preț: 355.76 lei
- 20% Preț: 352.85 lei
- Preț: 453.15 lei
- Preț: 380.45 lei
- Preț: 377.95 lei
- Preț: 343.00 lei
- Preț: 562.34 lei
- 15% Preț: 461.73 lei
- Preț: 379.68 lei
- Preț: 379.68 lei
- Preț: 411.36 lei
- Preț: 343.72 lei
- Preț: 350.11 lei
- Preț: 448.21 lei
- Preț: 378.92 lei
- Preț: 344.86 lei
Preț: 350.81 lei
Nou
Puncte Express: 526
Preț estimativ în valută:
67.14€ • 69.83$ • 56.27£
67.14€ • 69.83$ • 56.27£
Carte tipărită la comandă
Livrare economică 10-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319319506
ISBN-10: 3319319507
Pagini: 150
Ilustrații: XII, 108 p. 64 illus.
Dimensiuni: 155 x 235 x 7 mm
Greutate: 0.18 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3319319507
Pagini: 150
Ilustrații: XII, 108 p. 64 illus.
Dimensiuni: 155 x 235 x 7 mm
Greutate: 0.18 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
1.Graphs.- 2. Degrees and Hamiltoneity.- 3. Pancyclicity.- 4. Minimal Pancyclicity.- 5. Uniquely Pancyclic Graphs.- 6. Bipancyclic Graphs.- 7. Uniquely Bipancyclic Graphs.- 8. Minimal Bipancyclicity.- References.
Recenzii
“In this book, the authors give a simple survey about the sufficient conditions for a graph to be pancyclic (uniquely bipancyclic). Moreover, the authors give the proofs of some classic results which are useful tools to study and generalize cycle problems. Therefore, this book can help students and researchers alike to find inspiration and ideas on pancyclic and bipancyclic problems.” (Junqing Cai, Mathematical Reviews, February, 2017)
Textul de pe ultima copertă
This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation.
The following questions are highlighted through the book:
- What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length?
- What is the smallest possible number of edges in a bipartite graph with v vertices?
- When do bipartite graphs exist with exactly one cycle of every possible length?
The following questions are highlighted through the book:
- What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length?
- What is the smallest possible number of edges in a bipartite graph with v vertices?
- When do bipartite graphs exist with exactly one cycle of every possible length?
Caracteristici
Provides an up-to-date survey on pancyclic and bipartite graphs Surveys fundamental ideas of graph theory Creates a clear overview of the field via unified terminology Includes supplementary material: sn.pub/extras