Cantitate/Preț
Produs

System Identification Using Regular and Quantized Observations: Applications of Large Deviations Principles: SpringerBriefs in Mathematics

Autor Qi He, Le Yi Wang, George G. Yin
en Limba Engleză Paperback – 8 feb 2013
​This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular.  By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.
Citește tot Restrânge

Din seria SpringerBriefs in Mathematics

Preț: 34941 lei

Nou

Puncte Express: 524

Preț estimativ în valută:
6686 6981$ 5533£

Carte tipărită la comandă

Livrare economică 01-07 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461462910
ISBN-10: 1461462916
Pagini: 108
Ilustrații: XII, 95 p. 17 illus., 16 illus. in color.
Dimensiuni: 155 x 235 x 6 mm
Greutate: 0.16 kg
Ediția:2013
Editura: Springer
Colecția Springer
Seria SpringerBriefs in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

​Introduction and Overview.- System Identification: Formulation.- Large Deviations: An Introduction.- LDP under I.I.D. Noises.- LDP under Mixing Noises.- Applications to Battery Diagnosis.- Applications to Medical Signal Processing.-Applications to Electric Machines.- Remarks and Conclusion.- References.- Index

Caracteristici

Presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular First book devoted to large deviations to system identification Application oriented